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EXECUTIVE SUMMARY 

 

 
The performance and operational stability of the three pilot-scale SGBR for the treatment 

of industrial wastewater were investigated in this study. High organic removal efficiencies (over 

94% of COD removal) were obtained from the two pilot-scale SGBR (R1 and R2) for the 

treatment of slaughterhouse wastewater. During the operation of reactors, the solid retention 

times over 240 and 150 days for the R1 and R2, respectively were obtained. The pilot-scale 

SGBR was also successfully employed for treating dairy processing wastewater under 

psychrophilic conditions. COD, BOD, and TSS removal rates obtained were 93, 96, and 90%, 

respectively, even at low temperatures of 11°C. The SGBR achieved average COD, BOD, and 

TSS removal efficiencies higher than 91% even at high loading rates up to 7.31 kg COD/m
3
/d 

with an HRT of 9 h. The of three pilot-scale SGBR were operating in a stable condition since pH 

values were in the optimal range and VFA/alkalinity ratios were fairly low throughout the 

experimental period. The average methane yield of 0.26 L CH4/g CODremoved was possibly 

affected by a high fraction of particulate COD and operation at low temperatures. In addition to 

the conversions of soluble COD into methane, particulate organic matter was physically retained 

by adsorption to granular sludge and the entrapment of coarse suspended solids in the sludge 

bed. Increased headloss through the granular bed due to the accumulated excess biomass and the 

retained solids were controlled by periodic backwashing.  

 

A proper backwash rate is necessary to ensure effective removal of dispersed fine sludge 

and excessive suspended solids. Assuming that the average granule size and density in this study 

are in the range of 0.8-1.6 mm and 1000-1060 kg/m
3
, respectively, the minimum backwash rates 

varied from 0.02 to 4.34 m/h depending on the size and density of the granules. The proper 
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backwash velocity ranged from 0.11 to 11.33 m/h based on the assumption that the bed porosity 

increased up to 0.4 and 50% expansion was selected as the optimum value. Therefore, backwash 

at a flow rate of 10-15 gpm (3.91-5.87 m/h) was applied to the pilot-scale SGBR (cross-sectional 

area: 6.25 ft
2
) treating dairy wastewater in Tulare, CA. 

 

Performance of the lab-scale RRP biofilter was compared to a conventional gravel system 

and a peat biofilter system for treatment of septic tank effluent. During the study, the RRP 

biofilter provided similar or better performance than other systems in terms of organic removal 

and hydraulic capacity. After the start-up period, RRP biofilter achieved removal efficiencies for 

BOD5, TSS, ammonia nitrogen of 96, 93, and 90%, respectively, over the range of hydraulic 

loading rates of 1.4 to 5.0 gpd/ft
2
. On the other hand, the peat biofilter failed hydraulically and 

the gravel system showed high TSS concentrations in the effluent. RRP provided high surface 

area and sufficient time for biological treatment. In addition, RRP provided a non-toxic media 

for biofilm attachment in biofilter. RRP was observed to provide ammonia adsorption capacity. 

The results showed that RRP has the potential to be used as substitutes for natural aggregate such 

as gravel in septic system drainfields. The RRP biofilter can be used as alternative septic systems 

for the sites where an existing septic system has failed or site conditions, such as high 

groundwater table or small lot size, are not suitable for the installation of conventional septic 

systems.  
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CHAPTER 1. GENERAL INTRODUCTION 

 
 

Anaerobic treatment  

The anaerobic degradation of complex organic matter is carried out by multistep 

chemical and biological process. Complex and particulate organic matters such as proteins, 

carbohydrates, and lipids are decomposed into simpler soluble compounds (amino acids, glucose, 

and long chain fatty acids) by hydrolysis. Hydrolysis is carried out by extracellular enzymes 

excreted by hydrolytic and fermentative bacteria. Hydrolysis is usually considered to be a rate-

limiting step of the overall anaerobic digestion process. During Acidogenesis, the hydrolyzed 

compounds are fermented into volatile fatty acids (VFA), also referred to as short-chain fatty 

acids (SCFA), such as acetate, propionate, and butyrate. Short-chain fatty acids except acetate 

are degraded to acetate, H2, and CO2 by hydrogen producing acetogenic bacteria. About 66% of 

long chain fatty acids is oxidized to acetate and 33% to H2. Acetate is also directly derived from 

acidogenic fermentation of amino acids and sugars, and homoacetogenesis, in which H2 is used 

to reduce CO2 to acetate by hydrogen consuming acetogenic bacteria. In the final step of 

anaerobic digestion process, acetate is converted into CO2 and CH4 by acetoclastic 

methanogenesis. Approximately 70% of the total methane formed in anaerobic digestion 

originates from acetate and the other 30% is produced from reduction of CO2 by 

hydrogenotrophic methanogens (hydrogen oxidizing methanogens). Proton-reducing acetogenic 

bacteria is not suppressed by excessive H2 level due to syntrophic association between hydrogen-

producing acetogenic bacteria and hydrogen-utilizing methanogenic bacteria to maintain a low 

H2 partial pressure. On the other hand, both methane-producing bacteria and sulfate-reducing 

bacteria compete for the same electron donor, acetate and H2. Sulfate-reducing bacteria may 
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outcompete methanogens under low acetate conditions because methanogens have a lower 

affinity for acetate than sulfate-reducing bacteria.  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1−1. Anaerobic degradation of complex organic matters 

 

1) Fermentative bacteria 

2) Hydrogen-producing acetogenic bacteria  

3) Hydrogen-consuming acetogenic bacteria  

4) Hydrogenotrophic methanogens (CO2-reducing methanogens)  

5) Acetoclastic methanogens 
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Granular Sludge 

Immobilization of biomass without a support material was first observed in upflow 

anaerobic sludge bed (UASB) reactors through the formation of sludge granules (Lettinga et al., 

1980). MacLeod et al. (1990) proposed a layered structure model for anaerobic granules 

developed in UASB reactors based on the microscopic observations. The outer layer contains 

mainly heterogeneous populations together with acidogens and hydrogen-consuming 

microorganisms. Hydrogen-producing acetogens and hydrogen-consuming microorganisms 

predominated in the middle layer and the core dominated by acetotrophic methanogens 

(Methanosaeta spp.). Several studies reported that the bacterial composition and the structure of 

granular sludge were affected by the type of substrate (Fang et al., 1994; Grotenhuis et al., 

1991). 

 

 

 

 

 

 

 

 

Figure 1−2. Layered structure of anaerobic granules (MacLeod et al., 1990) 

 

 

Henze (2008) and Schmidt and Ahring (1996) reported that common characteristics of 

methanogenic granular sludge as listed in Table 1−1.  

Acidogens, H2-consuming organisms 
 

H2-producing acetogens,  
H2-consuming organisms 

Acetotrophic methanogens  
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Table 1−1. Characteristics of granular sludge 

Parameter Values (typical) 

Specific methanogenic activity  : 0.1 – 2.0
a
  kg COD-CH4/kg VSS/d 

Typical values for industrial wastewater : 0.5 – 1.0
a
  kg COD-CH4/kg VSS/d 

Settling velocities  : 2 – 100
a
 (15 – 50) m/h      

Density  : 1.0 – 1.05
a
  g/mL 

Diameter  : 0.1 – 8
a
 (0.14 – 5)

b
 mm 

Shape : spherical form
b
  

a
Henze et al. (2008)   

b
Schmidt and Ahring (1996) 

 

 

Static Granular Bed Reactor (SGBR) 

The static granular bed reactor (SGBR) is a simple downflow high rate anaerobic system 

developed at Iowa State University (U.S. Patent No. 6,709,591). The main advantages for the 

SGBR are high organic removal efficiency and operational simplicity. Due to the downflow 

configuration of the SGBR, the system has a simpler inlet flow distribution design and the 

generated biogas is easily separated from the granules and wastewater effluent and collected at 

the top of the reactor as shown in Figure 1−1. As the influent wastewater is mixed with the bulk 

liquid by the countercurrent flow of biogas and liquid, high concentrations of organics in the 

influent wastewater are dispersed and diluted. The downflow operation also allows solids in the 

influent to be filtered through the granular bed. Biogas-induced mixing sufficiently reduces dead 

volumes and short-circuiting and eliminates the need for mechanical agitation and mixing 

systems or recirculation pumping. The SGBR utilizes a bed of active anaerobic granules for 

treatment of wastewater with relatively small reactor volume sizes. Therefore, the SGBR can 

reduce relatively high costs associated with the packing materials, mixing equipment, or 

recirculation systems required. The high concentration of biomass retained within the reactor 
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allows the contact between the dissolved organic matter and the active biomass to be maximized, 

and an extremely long solids retention time (SRT) can be achieved. In addition, the suspended 

solids are trapped in the granular bed for a sufficient period to allow hydrolysis followed by 

further degradation to occur.  

 

The SGBR has been shown to be capable of treating a variety of wastewaters at high 

organic loading rates and short HRT in numerous laboratory and pilot scale studies (Debik et al., 

2005; Evans and Ellis, 2005; Evans and Ellis, 2006; Evans and Ellis, 2007; Mach and Ellis, 

2000; Park et al., 2012; Roth and Ellis, 2004). The performance of the SGBR fed with a 

synthetic wastewater composed of sucrose and non-fat dry milk was compared to the UASB 

reactor. At an HRT of 8 h, the COD removal efficiencies of the SGBR and UASB reactor were 

91 and 78%, respectively (Evans and Ellis, 2010). Roth and Ellis (2004) reported that the SGBR 

treating pork slaughterhouse wastewater obtained average COD removal efficiency greater than 

90% at an OLR range between 1.9 and 4.55 kg COD/m
3
/d. Park et al. (2012) also investigated 

the performance of a pilot-scale SGBR treating slaughterhouse wastewater. The reactor showed 

stable treatment efficiency at fluctuating organic loading rates from 0.77 kg/m
3
/d to 12.76 

kg/m
3
/d and achieved COD removal efficiencies above 95%. Rapid start-up (less than one 

month) was observed in both SGBR reactors. They concluded that increased OLR coupled with 

reduced HRT only slightly affected performance of the SGBR. Debilk and Coskun (2009) 

reported that the SGBR treating poultry slaughterhouses wastewaters attained average COD 

removal rates of 95%. Debik et al. (2005) also investigated the SGBR performance in treating 

leachate and obtained more than 90% COD removal rates efficiency at a high organic loading 

rate of 15 kg/m
3
/d.   
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Figure 1-3. Schematic diagrams of SGBR 

 

Industrial wastewater    

Slaughterhouses and meat processing wastewater typically contains blood, fat, and 

manure, resulting in high content of organic matter (US-EPA, 2002). The suspended and 

colloidal matter in the form of fats, proteins, and cellulose may have detrimental effect on the 

performance of anaerobic reactors due to their insolubility and slow rate of degradation (Johns, 

1995; Torkian, 2003). Aerobic treatment processes are considered less suitable for 

slaughterhouse wastewater due to high energy consumption for aeration, large quantities of 
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sludge production, and oxygen transfer limitations (Gavala et al., 1996; Rajeshwari et al., 2000; 

Speece, 1996). Therefore, anaerobic biological processes have been employed to treat 

slaughterhouse wastewater with high organic loads. Anaerobic lagoons are widely used for the 

treatment of primary treated slaughterhouse wastewater due to low operational and maintenance 

cost. On the other hand, the disadvantages of lagoons include odor problem and the large land 

area requirement. Therefore, high rate anaerobic processes have been proposed as alternatives to 

anaerobic lagoons, including the anaerobic contact (AC), upflow anaerobic sludge blanket 

(UASB), anaerobic filter processes (AF), and anaerobic sequence batch reactor (ASBR) (US-

EPA, 2002; Johns, 1995).  

 

Dairy wastewaters are typically characterized by their high biological oxygen demand 

(BOD) and chemical oxygen demand (COD) concentrations, resulting from proteins, fats, and 

carbohydrates including lactose and high levels of nitrogen and phosphorus (Brown and Pico., 

1979; Omil et al., 2003; Perle et al., 1995). Thus, dairy wastewater is regarded as a complex type 

of substrate. Due to the presence of high organic matter, anaerobic treatment processes are 

considered suitable for dairy wastewater. Carbohydrates in dairy wastewater are mainly lactose 

and easily degradable while proteins and lipids are less biodegradable. However, lipids may 

cause inhibitory effects on anaerobic processes as it is hydrolyzed to glycerol and long chain 

fatty acids (LCFAs). Long chain fatty acids were reported to cause inhibition in methane 

production.  
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Study Objective 

The aim of this research was to evaluate performance and operational stability of the 

three pilot-scale SGBR systems treating dairy processing wastewater and slaughterhouse 

wastewater, and to determine the optimum backwash parameters in order to achieve proper 

solids control. The kinetics of the two pilot-scale SGBR systems treating slaughterhouse 

wastewater were determined and kinetic models were compared to apply for describing the 

substrate utilization of the SGBR. In order to determine kinetic coefficients, mathematical 

models including Monod kinetics, Grau second-order model, and Stover-Kincannon model were 

applied to the system. Finally, in an unrelated investigation, the performance of biofilter system 

using a recycled rubber particle (RRP) system was also compared to a conventional gravel 

system and a peat system to demonstrate the feasibility of RRP as biofilm support media.  

 

Dissertation Organization 

This dissertation is organized into four major parts with individual papers.  The first part 

evaluates performance and operational stability of the SGBR treating dairy processing 

wastewater. The second part proposes optimum backwash procedures. The third part is the 

determination of kinetic parameters for the SGBR treating slaughterhouse wastewater. The final 

part demonstrates the feasibility of a recycled rubber particles (RRP) as biofilm support media in 

bioreactors for treating septic tank effluent.  
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CHAPTER 2. DAIRY PROCESSING WASTEWATER TREATMENT BY 

ON-SITE PILOT STATIC GRANULAR BED REACTOR (SGBR) 

Jin Hwan Oh and Timothy G. Ellis 

Department of Civil, Construction, and Environmental Engineering, 

Iowa State University, Ames, Iowa, 50011 U.S.A. 

 

Introduction  

The dairy industry is considered to be one of the largest sources of industrial wastewater. 

This situation will continue as the demand for dairy products increases. Dairy processing 

effluents are mainly generated from cleaning of transport lines and equipment between 

production cycles, cleaning of tank trucks, washing of milk silos, and equipment malfunctions or 

operational errors (Danalewich et al., 1998; Eroglu et al., 1991; Perle et al., 1995). Dairy 

processing wastewaters are typically characterized by their high biological oxygen demand 

(BOD) and chemical oxygen demand (COD) concentrations resulting from proteins, fats, and 

carbohydrates, including lactose, and high levels of nitrogen and phosphorus. Also included are 

various cleaning and sanitizing agents. Combined, these compounds result in the potential for 

environmental problems in terms of high organic load on the local municipal sewage treatment 

systems (Brown and Pico., 1979; Omil et al., 2003; Perle et al., 1995).  

 

Anaerobic treatment processes are regarded as suitable methods for treating dairy 

wastewater due to their advantages for treating industrial wastewaters with higher biodegradable 

organic matter and the characteristics of the dairy wastewater. Aerobic treatment processes, on 

the other hand, require high energy consumption for aeration and generate large amounts of 

sludge (Gavala et al., 1996; Rajeshwari et al., 2000; Speece, 1996). Therefore, laboratory-scale 
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anaerobic reactors for dairy wastewater treatment have been investigated in a number of previous 

studies. A typical range organic loading rate (OLR) for high rate anaerobic digesters including 

upflow anaerobic sludge blanket (UASB) reactors, anaerobic filters (AF), anaerobic sequencing 

batch reactor (ASBR) was 2.0 to 15 kg COD/m
3
/d (Demirel et al., 2005). The laboratory-scale 

UASB reactors for treatment of combined dairy and domestic wastewater achieved COD and 

TSS removal rates of 69 and 72% at an hydraulic retention time (HRT) of 24 h and an OLR 

range between 1.9 and 4.4 kg COD/m
3
/d (Tawfik et al., 2008). 

 

The static granular bed reactor (SGBR) is a simple downflow high rate anaerobic system 

developed at Iowa State University (U.S. Patent No. 6,709,591). The advantages for the SGBR 

include operational simplicity and high quality effluent. Due to the downflow configuration of 

the SGBR, it has a simpler inlet flow distribution design and the generated biogas is easily 

separated from the granules and wastewater effluent and collected at the top of the reactor. There 

are no packing materials and no mixing equipment or recirculation systems required, resulting in 

lower capital and operating costs. The SGBR utilizes a bed of active anaerobic granules for 

treatment of wastewater with relatively small reactor volume sizes, which contribute to higher 

COD removal efficiencies and biomass concentration of the granules. The SGBR has been 

shown to be effective in laboratory and pilot studies on treatment of municipal wastewater, and 

landfill leachate (Debik et al., 2005; Mach and Ellis, 2000; Roth and Ellis, 2004). In previous 

research, the performance of the SGBR treating a synthetic wastewater composed of sucrose and 

non-fat dry milk was compared to the UASB reactor. At an HRT of 8 h, the COD removal 

efficiencies of the SGBR and UASB reactor were 91 and 78%, respectively (Evans and Ellis, 

2005).  
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The Industrial Wastewater Treatment Plant (IWTP) at the city of Tulare, California treats 

wastewater from dairy processing industries that produce cheese, butter, ice-cream, and other 

dairy-based products. Industrial wastewater is treated by an anaerobic bulk volume fermenter 

(BVF) followed by a series of partially aerated facultative ponds. The existing IWTP with a 

capacity of 7.1 million gallons per day (MGD) is being expanded to comply with present and 

future discharge regulations and to handle additional flows and loadings from the various 

manufacturers. Therefore, a more robust and cost-effective wastewater pretreatment system is 

required to treat the unique and high-strength wastewater. The aim of this study was to observe 

the performance of a pilot-scale SGBR treating wastewaters from dairy processing plants. The 

performance of the SGBR was monitored and analyzed in terms of COD removal efficiencies 

and variation of volatile fatty acids (VFA). The pilot-scale SGBR was demonstrated under 

various operational conditions to develop the full-scale design parameters.  

 

 

Materials and methods   

Wastewater source and characteristics 

Dairy processing wastewater is composed of easily degradable carbohydrates, mainly 

lactose, as well as proteins and lipids which are less biodegradable. Approximately, 4.4 million 

gallons per day (mgd) of industrial wastewater was being generated from various industrial 

sources including seven large dairy processing plants. Thus, dairy processing wastewater used in 

this study can be considered as a complex type of wastewater. Although the composition of the 

wastewater with respect to carbohydrates, proteins and lipids was not determined in this study, 
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the wastewater might be expected to contain a high percentage of lipids according to the average 

particulate COD/VSS ratio of 2.77 ± 0.86 g COD/g VSS. The average ratio of pCOD to VSS was 

estimated based on total COD, soluble COD, and VSS concentrations, and the ratio was similar 

to the stoichiometric conversion factors for lipid of 2.87 g COD/g VSS. The characteristics of 

dairy processing wastewater used in this study are given in Table 2−1. The ratio of BOD5 to 

COD was calculated to evaluate the potential biodegradability of the organic contents in dairy 

processing wastewater. Dairy wastewater with a ratio below 0.40 can be considered recalcitrant 

due to the presence of non-milk constituents (Danalewich et al., 1998).  

 

Table 2−1. Characteristics of dairy processing wastewater 

Parameter Value 

pH 5.79 ± 0.67 

TSS, mg/L 493 ± 196 

VSS, mg/L 486 ± 196 

Total COD, mg/L 2883 ± 631 

Soluble COD, mg/L 1629 ± 286 

BOD5, mg/L 1637 ± 423 

Biodegradability (BOD5/COD) 0.6 ± 0.2 

 

Reactor set-up and operation  

A pilot-scale SGBR made of stainless steel was installed at the industrial wastewater 

treatment plant (IWTP) in Tulare, California and operated for 6 months. The reactor had a total 

volume of 2,200 gallon and a working volume of 1,500 gallon (Figure 2−1). The reactor was 

seeded with 900 gallons of anaerobic granules (60% of the reactor working volume) obtained 

from an operating UASB at City Brewing Company in La Crosse, Wisconsin. Specific 

methanogenic activity of the seed granular sludge was 0.333 g COD-CH4/g VSS/d. The 

anaerobic granules were transferred using a progressive cavity pump to prevent the disintegration 

of the granules. The dairy wastewater stream was pumped into a 2,500 gallon feed tank that was 
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used to store an influent wastewater for feeding the SGBR, to separate settleable and floating 

solids from the wastewater, and to adjust the pH of the wastewater by addition of sodium 

hydroxide (NaOH). The wastewater was sampled from the influent channel, and it was assumed 

that there was no significant change in the COD or TSS through the feed tank. This was verified 

by testing the SGBR influent against the influent channel. These two sampling points had similar 

average COD and TSS concentrations (p = 0.155 and 0.647). The dairy wastewater from the tank 

was fed into the SGBR using a progressive cavity pump and distributed through semi-circular 

pipe installed in the upper part of the reactor. A feed inlet pipe was also used for the drainage of 

backwashed water from the granular bed. The underdrain system consisted of perforated PVC 

pipes used for effluent discharge and backwashing, and a gravel layer was used to prevent 

biomass washout and protect underdrain pipes from clogging.  The treated effluent was 

discharged by gravity through the outlet pipe equipped with 8 valves having different height 

positions from 5 ft to 12 ft to control the water level in the reactor. The biogas was collected 

through a PVC pipe installed at the top of the digester. The biogas was subsequently fed into the 

gas scrubber filled with a mixture of coarse and fine steel wool to remove hydrogen sulfide 

(H2S). The gas treated by the scrubber was measured with a wet-test gas meters (RITTER
®
 

drum-type gas meter, Hawthorne, NY). The biogas was also sampled periodically by using 

Tedlar
TM

 bags through the valve installed on the pipe for gas composition analyses. A manometer 

and a side mounted tubular level indicator were installed to monitor the pressure and water level 

changes in the reactor.  The SGBR system was operated in continuous mode at an HRT of 48 h 

to maintain the optimum organic loading rate during the start-up period.   
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Figure 2−1. Pilot-scale SGBR system in Tulare, CA 
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Figure 2−2. Schematic diagrams of the pilot-scale SGBR system 

 

Data collection and analytical methods 

Influent and effluent samples were collected and analyzed 4-5 times per week to monitor 

the performance of the reactor over a period of 6 months. The parameters including pH, total 

alkalinity, biochemical oxygen demand (BOD), total suspended solids (TSS), and volatile 

suspended solids (VSS) were determined in accordance with Standard Methods for the 

Examination of Water and Wastewater (APHA,1998). Samples for SCOD and VFAs were 

filtered using glass-fiber filters prior to testing (Whatman GF/C, 1.2 µm). Soluble COD and VFA 

were measured from filtrate. Chemical oxygen demand (COD), soluble chemical oxygen demand 
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(SCOD), and volatile fatty acids (VFAs) were measured with a colorimeter following the Hach 

method 8000 and 8196. Biogas production was measured with a RITTER
® 

(Hawthorne, NY) 

wet-test (drum-type) gas meter and the biogas composition was analyzed with a Gow Mac 

Instrument Company (Bethlehem, PA) Series 350 Thermal Conductivity Detector. The biogas 

samples were also sent to BSK analytical laboratory in Fresno, CA for gas composition. Specific 

methanogenic activity tests (SMA tests) were performed to observe changes in sludge activities 

according to method described by Rinzema et al. (1988).  

  

Results and discussion 

Performance of the SGBR 

The performance of the SGBR with respect to COD, BOD, and TSS removal efficiencies 

was evaluated under a wide range of organic and hydraulic loading rates and temperature 

conditions.  Organic loading rates varied in the range of 0.63 to 9.72 kg COD/m
3
/d and HRT 

ranged between 9 to 96 h. The reactor was also operated at ambient temperature (19 ± 5 °C), 

which is under sub-mesophilic and psychrophilic conditions. 

 

The SGBR was initially operated in continuous mode at an HRT of 48 h to allow the 

granules to acclimate to the substrate. However, headloss increased in the reactor after 16 days of 

operation as a result of the accumulation of large particles since the raw wastewater prior to 

pretreatment was fed to the reactor. Therefore, a feed tank was installed with a screening process 

to trap debris and remove floating matter from the influent on day 23. Despite the increase in 

headloss, the SGBR showed good performance in terms of COD and TSS removal during the 

first 23 days as shown in Figure 2−3. The average COD and TSS removal efficiency were 92 and 
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80%, respectively. Longer HRTs (96 and 72 h) and an average OLR less than 0.9 kg COD/m
3
/d 

were temporarily maintained from day 23 to day 37. During this period, improvements in TSS 

reduction and operational stability in terms of head loss build up were observed. As the 

performance of the SGBR remained stable during the start-up period, the OLR was gradually 

increased by a stepwise decrease in HRT.  

 

Stable effluent COD concentrations were observed in the SGBR, even with the 

fluctuating influent COD levels ranging from 2000 to 7340 mg/L throughout the study as shown 

in Figure 2−3. The average total and soluble effluent COD concentrations were 160 and 89 

mg/L, respectively, corresponding to both total and soluble COD removal rates more than 94%. 

The SGBR achieved average BOD removal of 97%, which might be due to relative 

biodegradable nature of the wastewater having BOD to COD ratio of 0.6.  

 

After the feed tank installation, suspended solids reduction improved and 96% TSS 

removal was obtained at an HRT of 36 h. However, elevated levels of suspended solids were 

observed at an HRT of 30 h and thus the fluctuation of effluent TSS removal efficiency tended to 

decrease. Although effluent COD also slightly fluctuated, removal efficiencies were maintained 

between 87 to 96%. Considering the influent TSS concentration, it did not seem to be the main 

cause of the increase in effluent TSS. The decreased TSS removal possibly resulted from the 

incomplete hydrolysis of particulate organic matter. The results indicated that there was a trend 

in the ratio of pCOD to tCOD in the effluent which increased with increasing organic loading 

rate resulting from the shortening the HRT. A decrease in temperature may have contributed to 

this effect. Increased hydraulic shear forces could have reduced the retention time of influent 
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TSS in the SGBR. Consequently, bacteria would utilize the readily biodegradable soluble COD. 

Hydrolysis of particulate COD which is facilitated through extracellular enzymes may have been 

limited at the shorter HRT and lower temperature conditions. The SGBR did not have heating 

and insulation and was exposed to a sudden change in temperature from day 75 (21°C) to day 86 

(11°C). This could have affected the stability and performance of the SGBR system because the 

various metabolic groups of microorganisms involved in the digestion process might respond 

differently to reduced temperature. The hydrolysis of the particulate matter is very sensitive to 

temperature and usually considered to be the rate-limiting step. Hence, the reduced hydrolysis 

rate could cause the decrease in the degradable fraction of organic matter and consequently lead 

to an accumulation of particulate organic matter in the SGBR during operation at low 

temperatures (below 15°C) for 36 days (Lettinga et al., 1983). The increase in head loss was also 

observed during this period as entrapped solids were accumulated. Sanz and Fdz-Polanco (1990) 

reported accumulation of suspended solids at the top of the anaerobic fluidized bed reactor 

(AFBR) treating municipal sewage under lower temperature conditions (10°C). Uemura and 

Harada (2000) also reported entrapment or accumulation of suspended solids in the upflow 

anaerobic sludge bed (UASB) reactor for the treatment of raw domestic sewage at 13°C. Several 

studies have suggested that longer HRT was required to provide sufficient time for 

microorganism to solubilize biodegradable particulate at low temperatures (Elmitwalli et al., 

2002; Zeeman and Lettinga, 1999). Accordingly, the SGBR was operated at longer HRT (48, 42, 

and 36 h) for 17 days (day 86-103) to allow microorganisms to acclimate to the lower 

temperature (11°C). During this period, COD removal rate was maintained at around 93% and 

TSS removal efficiencies fluctuated around 90%. Even at high loading rates up to 7.31 kg 

COD/m
3
/d with an HRT of 9 h, high COD removal and TSS efficiencies more than 94 and 89% 
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were accomplished, respectively. Lower temperature and high loading rates did not appear to 

have a detrimental effect on the SGBR performance in terms of COD and suspended solids 

removal efficiencies. Suspended solids in the effluent did not significantly depend on the 

variations observed in the influent probably due to the removal through the physical process of 

suspended solids retention in the sludge bed. This indicates that the SGBR has a high capacity of 

retaining solids and acts in a filtration capacity due to its downflow operation.  

 

Figure 2−3. Variation of COD and TSS concentrations with removal efficiency 
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Monitoring parameters and the stability of the SGBR 

The pH, alkalinity, volatile fatty acids, and ammonia were monitored to evaluate the 

operational stability of the SGBR and control the system if necessary. The use of various acid or 

alkaline cleaning and sanitizing agents and other chemicals in the dairy industry resulted in 

influent pH values ranged from 4.7 to 8.6 with an average of 5.8. In the feed tank, 

fluctuating influent pH values were stabilized and adjusted by the addition of a 49% sodium 

hydroxide solution. As shown in Figure 2−4, the effluent pH was stably maintained between 6.7 

and 7.9 with an average 7.24, which was within the optimal pH range between 6.5 and 8.2 for 

methane production (Speece, 1996). It was shown that the alkalinity decreased from 875 to 575 

mg/L and VFA concentrations increased from 18 to 54 mg/L as HRT decreased from 48 to 30 h 

during the coldest period (day 94 to 104).  The increase in solubility of CO2 could result in 

consuming alkalinity under psychrophilic conditions.  As the hydraulic and organic loading rate 

further increased, the increase in VFA production might have resulted in a rapid consumption of 

alkalinity in the system. Hence, alkalinity and VFA concentrations were maintained at around 

533mg/L and 40 mg/L, respectively. These observations are supported by stable pH values in the 

effluent. In other words, alkalinity was used for maintaining stable pH conditions for 

methanogens, and hydrogen and volatile organic acids degrading methanogens in the SGBR 

were not inhibited due to enough buffer capacity, thereby resulting in no VFA accumulation. The 

ratio of VFA to alkalinity, indicating process stability, was monitored to ensure proper digestion 

condition (Ripley et al., 1986). A VFA to alkalinity ratio less than 0.3 reflects stable operating 

conditions, while a ratio between 0.3 and 0.4 indicates a potential for upset and possible need for 

corrective action. If the ratio exceeds 0.8, the process may fail as a result of digester acidification 

and inhibition of methanogens by VFA accumulation (WPCF Manual of Practice No. 16, 1987). 
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Figure 2−4 depicts the results of the ratio of VFA to alkalinity in the effluent. The ratio ranged 

from 0.02 to 0.12 through the study. The ratio of intermediate alkalinity to partial alkalinity 

(IA/PA) was also suggested by Ripley et al. (1986) as a simple and useful indicator of digester 

stability because VFA measurement was not required. PA is the titration from the pH of the 

original sample to an end-point of pH 5.75 and IA is related to VFA presence and the titration 

from a pH of 5.75 to 4.3. A ratio of IA/PA below 0.3 is recommended for anaerobic digestion, 

and the ratio of IA to PA in this study was on average 0.24. Therefore, it can be concluded that 

the SGBR system was operating in a stable condition since the pH was in the optimal range and 

VFA/alkalinity ratios were fairly low throughout the experimental period. 

 

The concentration of total ammonia in the effluent was measured to monitor the 

possibility for ammonia toxicity. It has been reported that ammonia concentrations below 200 

mg/L could be beneficial to anaerobic microorganisms (Liu and Sung, 2002). However, high free 

ammonia concentration may inhibit the methanogenic activity, which is a function of 

temperature and pH (Hobson and Shaw, 1976; Liu and Sung, 2002; McCarty, 1964; Vandenburg

h and Ellis, 2002). Total ammonia concentrations in the effluent were relatively low and ranged 

from 8 to 104 mg/L as N, with an average of 56 ± 22 mg/L as N. The maximum concentration of 

free ammonia was found to be less than 2 mg/L since the SGBR was operating under neutral pH 

conditions and low temperatures.  
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Figure 2−4. Variation of pH, alkalinity, VFA/ALK ratio, and IA/PA ratio 
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to 1200 μS/m. The caustic soda used for alkalinity resulted in an overall increase in EC through 

the system, but the resultant increase is only a fraction of that for caustic soda.    

 

Specific methanogenic activity  

Specific methanogenic activity (SMA) tests were conducted to determine the maximum 

methane production rate of anaerobic granular sludge under controlled environmental conditions. 

The methanogenic activity of biomass is expressed as the COD equivalent of the methane 

produced per gram of VSS per day (g COD-CH4/g VSS-d). The methanogenic activity of 

granular sludge can vary depending on operational parameters including HRT, OLR, process 

temperature, mixing conditions, influent COD concentration, substrate characteristics, adaptation 

of the biomass, presence of inhibiting factors, and reactor configuration (Grotenhuis et al., 1991; 

Kato et al., 1997; Kettunen and Rintala, 1997; Lettinga, 1995).  

 

Specific methanogenic activity of the seed granular sludge was 0.333 g COD-CH4/g 

VSS-d and the granular sludge was sampled from the two sampling ports, located in the middle 

and bottom of the reactor (1.2 and 0.6 m from the base), to compare the activity of sludge at 

different depths. The SMA of the granules sampled from the middle and bottom of the reactor 

was slightly lowered to 0.270 and 0.288 g COD-CH4/g VSS-d, respectively, on day 86 at an OLR 

of 1.70 kg COD/m
3
/d. During the first 85 days of operation, average values of OLR and influent 

COD concentration were 1.53 kg COD/m
3
/d and 2799 mg/L, respectively. Therefore, the effect 

of substrate concentration on the activity could be considered negligible. The decrease in the 

methanogenic activity was probably due to the effect of changed operational conditions such as 

operating temperatures on the SMA because OLR and influent COD concentrations were fairly 
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constant. Ho and Sung (2010) reported that acetoclastic methanogenic activity of suspended 

sludge in laboratory-scale anaerobic membrane bioreactors (AnMBRs) at 15 °C was shown to be 

40% lower than at 25 °C after 75 days of operation. The value of the half-saturation constants 

(KS) of acetate has been found to increase at decreasing temperatures (Lin et al., 1987). 

Therefore, the lower methanogenic activity than the seed sludge was most likely related to the 

decreased activity of acetoclastic methanogens due to the lower substrate affinity for acetate after 

exposure to low temperature (11°C) conditions. On the other hand, the population of 

hydrogenotrophic methanogens (hydrogen oxidizing methanogens) might increase due to the 

increase in H2 and CO2 level in the reactor at low temperatures, which was expected to 

contribute to methane production. The proliferation of hydrogenotrophic methanogens at low 

temperature has been reported in several previous studies (Collins et al., 2005; Conrad and 

Wetter, 1990; Enright et al., 2005; Kotsyurbenko et al., 1996; Lettinga et al., 1999; Lettinga et 

al., 2001; McHugh et al., 2004). However, there was an insignificant decrease in acetoclastic 

methanogens activity, indicating that methanogens showed ability to adapt to low temperature 

conditions.  

 

The SMA of the granules from the middle and bottom increased to 0.478 and 0.337 g 

COD-CH4/g VSS-d, respectively, on day 125 at an HRT of 24 h. The increase of the SMA might 

have resulted from elevated temperature (18°C). This would indicate that the activity of 

acetoclastic methanogens was recovering from temperature shock. The highest acetoclastic 

methanogenic activity was observed in the middle part of the SGBR. It should be noted that 

additional backwash through the side valve from day 93 might provide sufficient mixing to 

enhance the contact between methanogens and substrate, and lead to selective wash out of finely 
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dispersed sludge in the middle part of the SGBR. The differences in SMA values could be 

explained by concentration gradients of substrate within the granular bed, different 

concentrations of methanogenic populations, or different substrate affinity of methanogens. For 

example, Methanosaeta has a higher substrate affinity (thus lower Ks) for acetate but longer 

doubling times than Methanosarcina. Accordingly, Methanosaeta will be the dominant 

acetoclastic methanogens at low acetate concentrations, while the fast growing Methanosarcina 

is usually favoured by high acetate concentrations due to its shorter doubling times. Kalyuzhnyi 

et al. (1996) reported the population of methanogens in the lower part of the laboratory-scale 

UASB reactor was 2-3 orders of magnitude higher than in the upper part since VFA levels 

decreased with increasing reactor height. Ruiz et al. (1997) also found that lower methanogenic 

activity in the upper part of the UASB operated at 37°C due to the accumulation of inert solids. 

 

Several studies have reported that the population of acetoclastic methanogens, as well as 

its activity, decreased with increasing OLR and decreasing HRT (Fang and Yu, 2000; Jawed and 

Tare, 1996; Kalyuzhnyi et al. 1996). It is possible that an accumulation of slowly biodegradable 

substrate in the sludge bed could lead to deterioration of the SMA under high loading conditions, 

or shorter HRT may somewhat limit methanogens by washing out the available substrate 

(Elefsiniotis and Oldham, 1994; Sayed et al, 1987). On the other hand, the SMA values observed 

in this study were above 0.3 g COD-CH4 g
−1

 VSS
−1

 day
−1

 at higher OLR and an HRT of 12 h.  

 

The results obtained in the SMA tests were found to be in the range reported in previous 

studies, even though anaerobic systems were treating various wastewaters under different 
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operating conditions (Table  2−2). From the results of the SMA tests, the methanogens in the 

SGBR have shown the capacity to withstand organic and hydraulic shock loads.   

 

Table 2−2. Comparison of acetoclastic SMA results in different processes 

Reactor Original feed 

Operating 

Temperature

(°C) 

Test 

temperature

(°C) 

SMA 

(gCH4-COD/gVSS-d) 
Reference 

EGSB Synthetic wastewater 20 20 0.5 
Yoochatchaval et al 

(2008) 

UASB Synthetic wastewater 35-37 35 0.117 – 0.709 
Kalyuzhnyi et al 

(1996) 

UAF Synthetic wastewater 35 35 0.359 
Mohammad and 

Vinod (1999) 

EGSB-AF Synthetic wastewater 15 37 0.028-0.825 Enright et al (2005) 

UASB 
Pharmaceutical 

wastewater 
30 – 36 35 0.182 Ince et al. (2001) 

TPAD 
Mixture of primary and 

waste activated sludge 
35 35 0.092 – 0.418 

Vandenburgh and 

Ellis (2002) 

EGSB-AF Brewery 15 37 0.95 
Connaughton et al. 

(2006) 

AnMBR NFDM, acetate, starch 25 25 0.172 
Ho and Sung 

(2010) 

AnMBR NFDM, acetate, starch 15 25 0.103 
Ho and Sung 

(2010) 

SGBR 
Slaughterhouse 

wastewater 
24 – 26 35 0.324 – 0.377 Park et al. (2012) 

SGBR 
Dairy processing 

wastewater 
11 – 20 35 0.270 – 0.478 This study 

UASB: Upflow Anaerobic Sludge Blanket, UAF: Upflow Anaerobic Filter, EGBR: Expanded Granular Bed Reactor 

AF: Anaerobic Filter, TPAD: Temperature Phased Anaerobic Digestion, AnMBR: Anaerobic Membrane Bioreactors 
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Biogas production and composition  

The biogas collected from the top of the digester fed into a gas scrubber to remove 

hydrogen sulfide (H2S), and then treated biogas was measured with a wet-test gas meter. The 

biogas was also sampled periodically by using Tedlar
TM

 bags through the valve installed on the 

pipe for gas composition analyses. The measured biogas volume was converted to the volume at 

standard temperature and pressure (STP) condition (0°C, 1 atm). The dissolved methane in the 

effluent and backwash water were determined in accordance with Henry’s law and included in 

actual methane production. Typically, the percentage of methane in the biogas increases while 

that of carbon dioxide (CO2) decreases as operating temperature is lowered because methane is 

much less soluble than CO2. However, in this study there was no obvious increase in the 

proportion of methane in the biogas with decreasing temperature. From the results of the biogas 

composition and production, an average methane content of 75% was obtained and the amount 

of methane dissolved in the effluent and released during backwashing was 7.1 and 14.9%, 

respectively, of the total methane production.  

 



www.manaraa.com

28 
 

 

Figure 2−5. Effect of temperature and OLR on methane production 

 

The actual methane production rate (L/d) and yield (L CH4 /g CODremoved at STP 

conditions) were compared with the theoretical value as shown in Figure 2−6. The theoretical 

methane production rate was calculated based on the assumption of 94% COD removal 

efficiency, 90% COD removed conversion into methane as well as a theoretical methane yield of 

0.35 L CH4/g CODremoved. The results showed that methane productions (L/d) were improved by 

the increase of operating temperatures and OLR (decreasing HRT) from 118 days. Average 

methane production rate at temperatures below 18°C was 3,119 L/d, and it increased to 3,616 

L/d at temperature above 18°C in the same HRT of 24 h. The highest methane production rate 

was observed at an OLR of 2.8 kg COD/m
3
/d and temperature of 19°C. However, the difference 

between actual methane production and the theoretical maximum production increased with 

increasing OLR. The actual amount of methane accounted for 77% of the theoretical values at an 

average OLR of 2.0 kg COD/m
3
/d, and it decreased to 46% of the theoretical values at an 
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average OLR of 5.0 kg COD/m
3
/d.  

 

 

 

Figure 2−6. The actual and theoretical methane production and yield 

 

The higher conversion of the wastewater to methane was obtained at lower OLR and 

relatively high temperatures. The average methane yield from day 34 to 47 was found to be 0.33 
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L CH4 /g CODremoved at an OLR of 1.3 kg COD/m
3
/d and temperature of 23°C, which 

corresponded to 94% of the theoretical value. Conversion to methane of the removed COD 

decreased with the increase in OLR. Consequently, the overall average methane yield was 0.26 L 

CH4/g CODremoved. These lower methane yields could possibly be attributed to a high fraction of 

particulate COD (32 to 52%) and operation at low temperatures. The results also suggested that 

soluble or particulate organic matter was not completely converted into methane, but were 

physically retained by adsorption of the colloidal fraction of wastewater to granular sludge and 

the entrapment of coarse suspended solids in the sludge bed.  

 

Percentage of hydrolysis (H), acidification (A) and methanogenesis (M) were calculated 

according to the following equations (2.1), (2.2) and (2.3), respectively (Elmitwalli et al., 2002b) 

and summarized in Table 3. The influent VFA concentration of 147 mg/L as HAc and conversion 

factor of 1.28 g COD per g VFA were assumed (Danalewich et al, 1998; Rössle and Pretorius, 

2001). 

4CH eff inf

inf inf

s s
(%) 100

t s

COD COD COD
H

COD COD

  
  

 
                                                                            (2.1) 

4CH eff inf

inf inf

(%) 100
VFA VFA

VFA

COD COD COD
A

tCOD COD

  
  

 
                                                                       (2.2) 

4CH

inf

(%) 100
COD

M
tCOD

 
  

 
                                                                                                             (2.3) 

t s pCOD COD COD                                                                                                               (2.4) 

where total COD = soluble COD + particulate COD   

          tCODinf = amount of total COD, mg/L 

          sCODinf and sCODeff = amount of soluble COD in influent and effluent, mg/L 



www.manaraa.com

31 
 

          CODCH4 = amount produced CH4 including dissolved form, mg/L 

          CODVFA inf and CODVFA eff = amount of VFA in influent and effluent, mg/L 

 

Table 2−3. Hydrolysis (H), acidification (A) and methanogenesis (M)  

Time Temperature OLR Methane yield H A M 

(Days) (°C) (kg COD/m
3
/d) (L CH4/CODremoved) (%) 

34-47 23 1.3 0.29 93 ± 39 36 ± 7 79 ± 16 

48-61 22 1.8 0.21 27 ± 40 25 ± 5 59 ± 11 

62-76 21 1.6 0.26 57 ± 23 30 ± 3 71 ± 6 

77-93 14 1.8 0.22 -12 ± 101 23 ± 7 52 ± 15 

94-105 11 1.7 0.21 14 ± 44 24 ± 5 54 ± 13 

106-118 13 2.2 0.19 17 ± 22 20 ± 3 49 ± 6 

119-135 18 3.4 0.21 24 ± 39 19 ± 7 51 ± 18 

136-152 18 3.0 0.26 54 ± 64 25 ± 10 66 ± 28 

153-169 20 3.5 0.21 13 ± 52 20 ± 6 55 ± 15 

170-185 20 6.6 0.12 -45 ± 39 10 ± 2 32 ± 6 

Mean 18 2.8 0.23 23 ± 63 23 ± 9 56 ± 19 

 

The calculated percentages of hydrolysis, acidification and methanogenesis indicated that 

hydrolysis was more sensitive to low temperature and high loading rate compared to 

acidification and methanogenesis. The slow hydrolysis of entrapped solids could allow solids to 

accumulate in the sludge bed at high organic loading rates. Consequently, overall conversion to 

methane of the removed COD was limited, resulting in lower values of methane yield. 

Pavlostathis and Giraldo-Gomez (1991) also concluded that the rate of anaerobic conversion of 

complex organic matter is, in most cases, limited by the hydrolysis step.  
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COD balance and backwashing  

The principal equation for COD balance of the SGBR is: 

 

4eff CH accumulated backwashei dnft  tCOD COD CODD COCO D     (2.5) 

CH4 CH4

4

g

0.35L

COD
COD V

CH
                                                                                                        (2.6)                               

4CH measured released dissolved biogas 4 released CH4 eff backwash( % ) ( )V V V V V CH V S Q Q                           (2.7) 

3

CH4

mol 1 1 L
1.4 10 exp 1700 1atm 22.4

L atm 273.15 298.15 mol
S

T

   
          

  (2.8) 

  inf
backwashed backwashed biomass

inf

pCOD
COD VSS VSS

VSS

 
   
 

  (2.9) 

where  tCOD = SCOD + pCOD  

Vbiogas = volume of the biogas, L  

            Vreleased = volume of methane released to atmosphere during the backwash  

            %CH4= methane content of the biogas, % 

            SCH4 = solubility of methane at STP, L CH4/L            

            kH = Henry's Law constant at 298.15K = 0.0014 mol L
-1

 atm
-1

 

            CODbackwashed = amount of COD removed by backwash, mg/L            

            VSSbackwashed = amount of VSS in backwash water, mg/L  

            VSSbiomass = amount of wasting biomass, mg/L 

            pCODinf/VSSinf = ratio of particulate COD to VSS in influent, g COD/g VSS 

 

Several assumptions were made to develop the COD mass balance: 

(1) 90% of COD removed was converted into methane and the remaining 10% of COD 
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removed was utilized for biomass synthesis.   

(2) The biomass yield coefficient was 0.10 gVSS/gCODremoved. 

(3) 1.0 g of COD removed produced 0.35 L of CH4.  

(4) Soluble COD was more readily biodegradable than particulate COD.   

(5) The difference between total CH4 production and CH4 from soluble COD conversion 

represented the increase in soluble COD by hydrolysis of suspended solids. 

(6) The amount of VSS in backwash water included undegraded suspended solids and wasted 

biomass. 

 

Figure 2−7. Overall COD balance of the SGBR   
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Figure 2−8. The accumulation of COD in the SGBR 

 

The COD mass balance indicated that 50 and 25% of the influent COD were treated by 

means of the conversion of COD to methane and backwash, respectively, and remaining 19% of 

the influent COD was retained and accumulated in the reactor. More than 70% of soluble COD 

and 23% of particulate COD were converted into methane. This indicates that soluble COD was 

responsible for most of the methane production and some methane was also produced from the 

hydrolysis and fermentation of entrapped particulate organic matter. There was only a slight 

accumulation of COD, despite the sudden drop in temperature. On the other hand, the 

accumulation of COD tended to increase with increasing OLR and decreasing HRT. A gradual 

accumulation of slow and non-biodegradable solids within the void spaces between the granules 

caused headloss in the reactor. Therefore, sludge and suspended solids were removed by means 

of periodic backwashing. Backwashing frequency was determined according to head loss and 

was usually once a week. The 300 gallons of effluent stored in a 305-gallon tank was pumped at 

the flow rate of 10 gpm (gallon per minute) for 30 minutes. Approximately, half of accumulated 
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particulate COD was removed and controlled by wasting of undegraded suspended solids as well 

as dispersed fine sludge via backwash. In addition to the routine backwash through the 

underdrain, backwash through side valves at 2 and 4 ft was performed from day 93 due to the 

dense and compact granular bed. This likely loosened the entire granular bed and removed slow 

and non-biodegradable solids in the SGBR. Therefore, the accumulation of COD slowed and 

increased slightly until day 118 even at lower temperatures. The increase in particulate COD 

accumulation was accompanied by increased OLR while soluble COD was adequately treated. 

However, a significant accumulation of undegraded organic matter was observed at short HRT of 

less than 18 h and ORL more than 3.5 kg COD/m
3
/d.     

 

Conclusions 

The pilot scale SGBR was successfully employed for treating dairy processing 

wastewater under psychrophilic conditions and high loading rates. At low temperatures of 11°C 

COD, BOD, and TSS removal rates obtained were 93, 96, and 90%, respectively. The SGBR 

achieved average COD, BOD, and TSS removal efficiencies higher than 91% even at high 

loading rates up to 7.31 kg COD/m
3
/d with an HRT of 9 h. The SGBR system was operating in a 

stable condition since the pH was in the optimal range and VFA/alkalinity ratios were fairly low 

throughout the experimental period. The average methane yield (0.26 L CH4/g CODremoved) could 

possibly be affected by a high fraction of particulate COD (32 to 52%) and operation at low 

temperatures. Soluble COD was responsible for most of the methane production and particulate 

organic matter was physically retained by adsorption of the colloidal fraction of wastewater to 

granular sludge and the entrapment of coarse suspended solids in the sludge bed. The 

accumulated excess biomass and the retained solids were removed from the system by means of 



www.manaraa.com

36 
 

periodic backwashing.  

 

References  

 
APHA (1998) Standard Methods for the Examination of Water and Wastewater, 20th ed. 

American Public Health Association, Washington, D.C. 

 

Banik, G. C., Ellis, T. G. and Dague, R. R. (1997) Structure and methanogenic activity of 

granules from an ASBR treating dilute wastewater at low temperatures. Water Science and 

Technology, 36(6), 149–156. 

 

Brown, H. B. and Pico, R. F. (1979) Characterization and Treatment of Dairy Wastes in the 

Municipal Treatment System, 326–334. 34th Purdue Industrial Waste Conference, West 

Lafayette, IN. 

 

Collins, G., Foy, C., McHugh, S., Mahony, T. and O’Flaherty, V. (2005) Anaerobic biological 

treatment of phenolic wastewater at 15–18°C. Water Research, 39(8), 1614–1620. 

 

Connaughton, S., Collins, G. and O’Flaherty, V. (2006) Psychrophilic and mesophilic anaerobic 

digestion of brewery effluent: a comparative study. Water Research, 40(13), 2503–2510. 

 

Conrad, R. and Wetter, B. (1990) Influence of temperature on energetics of hydrogen 

metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Archives of 

Microbiology, 155(1), 94–98. 

 

Danalewich, J. R., Papagiannis, T. G., Belyea, R. L., Tumbleson, M. E. and Raskin, L. (1998) 

Characterization of dairy waste streams, current treatment practices, and potential for biological 

nutrient removal. Water Research, 32(12), 3555–3568. 

 

Debik, E., Park J. and Ellis T. G. (2005) Leachate Treatment Using the Static Granular Be 

Reactor, Proceedings of the Water Environment Federation 78
rd

 Annual Conference and 

Exposition, Washington, DC. 

 

Elefsiniotis, P. and Oldham, W. K. (1994) Effect of HRT on acidogenic digestion of primary 

sludge. Journal of Environmental Engineering, 120(3), 645-660. 

 

Elmitwalli, T. A., Sklyar, V., Zeeman, G. and Lettinga, G. (2002a) Low temperature pre-

treatment of domestic sewage in anaerobic hybrid or an anaerobic filter reactor. Bioresource 

Technology, 82, 233-239. 

 

Elmitwalli, T. A., Zeeman, G., Oahn, K. L. and Lettinga, G. (2002b) Treatment of domestic 

sewage in a two-step system anaerobic filter/anaerobic hybrid reactor at low temperature. Water 

Research, 36(9), 2225–2232. 

 



www.manaraa.com

37 
 

Enright, A. M, McHugh, S., Collins, G. and O’Flaherty, V. (2005) Low temperature anaerobic 

biological treatment of solvent-containing pharmaceutical wastewater. Water Research, 39, 

4587–4596. 

 

Eroglu, V., Ozturk, I., Demir, I., Akca, L. and Alp, K. (1991) Sequencing Batch and Hybrid 

Anaerobic Reactors Treatment of Dairy Wastes, 413–422. 46th Purdue Industrial Waste 

Conference, West Lafayette, IN. 

 

Evans, E. A. and Ellis, T. G. (2005) Industrial wastewater treatment with the Static Granular Bed 

Reactor versus the UASB, Proceedings of the Water Environment Federation 78
rd

 Annual 

Conference and Exposition, Washington, DC. 

 

Fang, H. H. P. and Yu, H.Q. (2000) Effect of hydraulic retention time (HRT) on mesophilic 

acidogenesis of dairy wastewater. Journal of Environmental Engineering, 126(12), 1145–1148. 

 

Gavala, H. N., Skiadas, I. V., Nikolaos, A. B. and Lyberatos, G. (1996) Anaerobic digestion of 

agricultural industries wastewaters. Water Science and Technology, 34(11), 67–75. 

 

Grotenhuis, J. T. C., Plugge, C. M., Stams, A. J. M. and Zehnder, A.J.B. (1991) Role of substrate 

concentration in particle size distribution of methanogenic granular sludge in UASB reactors. 

Water Research, 25, 21–27. 

 

Ho, J. and Sung, S. (2010) Methanogenic activities in anaerobic membrane bioreactors 

(AnMBR) treating synthetic municipal wastewater, Bioresource Technology, 101, 2191-2196. 

 

Ince, O., Ince, B. K. and Yenigun, O. (2001) Determination of potential methane production 

capacity of a granular sludge from a pilot-scale upflow anaerobic sludge blanket reactor using a 

specific methanogenic activity test. Journal of Chemical Technology and Biotechnology, 76, 

573–578. 

 

Jawed, M. and Tare, V. (1996) Methanogenic activity and performance of UASB, DSFF and 

USFF reactors. Water Science and Technology, 34(5-6), 483-487. 

 

Jawed, M. and Tare, V. (1999) Microbial composition assessment of anaerobic biomass through 

methanogenic activity tests. Water SA, 25, 345–350. 

 

Kalogo, Y., Bouche, J. H. M. and Verstraete, W. (2001) Physical and biological performance of 

self-inoculated UASB reactor treating raw domestic sewage.  Journal of Environmental 

Engineering, 127(2), 179-183. 

 

Kalyuzhnyi, S. V., Sklyar, V. I., Davlyatshina, M. A., Parshina, S. N., Simankova, M. V., 

Kostrikina, N. A. and Nozhevnikova, A. N. (1996) Organic removal and microbiological features 

of UASB-reactor under various organic loading rates. Bioresource Technology, 55(1), 47-54. 

 

Kato, M. T., Field, J. A. and Lettinga, G. (1997) The anaerobic treatment of low strength 

wastewaters in UASB and EGSB reactors. Water Science and Technology, 36(6-7), 375-382. 



www.manaraa.com

38 
 

 

Kettunen, R. H. and Rintala, J. A. (1997) The effect of low temperature (5-29°C) and adaptation 

on the methanogenic activity of biomass. Applied Microbiology and Biotechnology, 48, 570-576. 

 

Kotsyurbenko, O., Nozhevnikova, A., Soloviova, T. and Zavarzin, G. (1996) Methanogenesis at 

low temperature by microflora of tundra wetland soil. Antonie Van Leeuwenhoek, 69(1), 75–86. 

 

Lettinga, G. (1995) Anaerobic digestion and wastewater treatment systems. Anthonie van 

Leeuwenhoek. 67, 3-28. 

 

Lettinga, G., Rebac, S., Parshina, S., Nozhevnikova, A., van Lier, J. & Stams, A. (1999) High-

rate anaerobic treatment of wastewater at low temperatures. Applied and Environmental 

Microbiology, 65, 1696–1702. 

 

Lettinga, G., Rebac, S. and Zeeman, G. (2001) Challenge of psychrophilic anaerobic wastewater 

treatment. Trends in Biotechnology, 19(9), 363–370.  

 

Lettinga, G., Roersma, R. & Grin, P. (1983) Anaerobic treatment of raw domestic sewage at 

ambient temperatures using a granular bed UASB reactor. Biotechnology and Bioengineering, 

25, 1701-1723. 

 

Lin, C. Y., Noike, T., Sato, K. and Matsumoto, J. (1987) Temperature characteristics of the 

methanogenesis process in anaerobic digestion. Water Science and Technology, 19, 299-310. 

 

Liu, T. and Sung, S. (2002) Ammonia inhibition on thermophilic acetoclastic methanogens. 

Water Science and Technology, 45, 113–120. 

 

Mach, K. F. and Ellis, T. G. (2000) Height to Width Ratio Comparisons of the Static Granular 

Bed Reactor, Proceedings of the Water Environment Federation 73
rd

 Annual Conference and 

Exposition, Anaheim, CA.  

 

McHugh, S., Carton, M., Collins, G. and O’Flaherty, V. (2004) Reactor performance and 

microbial community dynamics during anaerobic biological treatment of wastewaters at 16–37 

°C. FEMS Microbiology Ecology, 48, 369–378. 

 
Omil, F., Garrido, J. M., Arrojo, B. and Mendez, R. (2003) Anaerobic filter reactor performance 

for the treatment of complex dairy wastewater at industrial scale. Water Research, 37, 4099–

4108. 

 

Park, J., Oh, J. H. and Ellis, T. G. (2012) Evaluation of an on-site pilot static granular bed reactor 

(SGBR) for the treatment of slaughterhouse wastewater. Bioprocess Biosystems Engineering, 35, 

459-468. 

 

Pavlostathis, S. G. and Giraldo-Gomez, E. (1991) Kinetics of anaerobic treatment: a critical 

review. Critical Review in Environmental Control, 21, 411-490. 

 



www.manaraa.com

39 
 

Perle, M., Kimchie, S. and Shelef, G. (1995) Some biochemical aspects of the anaerobic 

degradation of dairy wastewater. Water Research, 29(6), 1549–1554. 

 

Rajeshwari, K. V., Balakrishnan, M., Kansal, A., Lata, K. and Kishore, V.V.N. (2000) State-of-

the-art of anaerobic digestion technology for industrial wastewater treatment. Renewable and 

Sustainable Energy Reviews, 4(2), 135–156.  

 

Rinzema, A., van Lier, J. and Lettinga, G. (1988) Sodium inhibition of acetoclastic methanogens 

in granular sludge from a UASB reactor. Enzyme Microbial Technology, 10, 24-32. 

 

Ripley, L. E., Boyle, W. C. and Converse, J. C. (1986) Improved alkalimetric monitoring for 

anaerobic digestion of high-strength wastes. Journal of Water Pollution Control Federation, 

58(5), 406-411. 

 

Rössle, W. H. and Pretorius, W. A. (2001) A review of characterization requirements for in-line 

prefermenters. Water SA, 27(3), 405–412. 

 

Roth, M. J. and Ellis, T. G. (2004) On-Site Pilot Demonstration of the Static Granular Bed 

Reactor (SGBR), Proceedings of the Water Environment Federation 77
rd

 Annual Conference 

and Exposition, New Orleans, LA. 

 

Ruiz, I., Veiga, M. C., Santiago, P. and Blazquez, R. (1997) Treatment of slaughterhouse 

wastewater in a UASB reactor and an anaerobic filter. Bioresource Technology, 60, 251-258. 

 

Sanz, I. and Fdz-Polanco, F. (1990) Low temperature treatment of municipal sewage in 

anaerobic fluidized bed reactors. Water Research, 24, 463–469. 

 

Sayed, S., Campen, L. and Lettinga, G. (1987) Anaerobic treatment of slaughterhouse waste 

using a granular sludge UASB reactor. Biological Wastes, 21(1), 11–28. 

 

Speece, R. E. (1996) Anaerobic Biotechnology for Industrial Wastewaters, Archae Press, 

Nashville, TN. 

 

Tawfik, A., Sobhey, M. and Badawy, M. (2008) Treatment of a combined dairy and domestic 

wastewater in an up-flow anaerobic sludge blanket (UASB) reactor followed by activated sludge 

(AS system). Desalination, 227, 167-177. 

 

Uemura, S. and Harada, H. (2000) Treatment of sewage by a UASB reactor under moderate to 

low temperature conditions. Bioresource Technology, 72, 275-282.  

 

Vandenburgh, C. R. and Ellis, T. G. (2002) Effect of varying solids concentration and organic 

loading on performance of temperature phased anaerobic digestion process. Water Environment 

Research, 74, 142-148. 

 

Water Pollution Control Federation Manual of Practice No.16, Second Edition (1987) Anaerobic 

Sludge Digestion, Water Pollution Control Federation, 118p. 



www.manaraa.com

40 
 

 

Zeeman, G. and Lettinga, G. (1999) The role of anaerobic digestion of domestic sewage in 

closing the water and nutrients cycle at community level. Water Science and Technology, 39(5), 

187–194. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

41 
 

 CHAPTER 3. BACKWASHING OF THE STATIC GRANULAR BED 

REACTOR (SGBR) 

 

Jin Hwan Oh and Timothy G. Ellis 

Department of Civil, Construction, and Environmental Engineering, 

Iowa State University, Ames, Iowa, 50011 U.S.A. 

 

 

Introduction  

In the static granular bed reactor (SGBR), wastewater enters at the top of the reactor 

through the inlet flow distribution system and passes downward by gravity through the dense bed 

of active anaerobic granules. The downflow mode of operation allows the influent wastewater to 

be mixed with the bulk liquid by the countercurrent flow of biogas and liquid. Thus, high 

concentrations of organics in the influent wastewater are immediately dispersed and diluted. 

Biogas induced mixing sufficiently reduces dead volumes and short-circuiting and eliminates the 

need for a mechanical agitation mixing systems or recirculation pumping.  

 

Due to the high biomass concentration, the contact between the dissolved organic matter 

and the active biomass are maximized. The suspended solids are trapped in the granular bed for a 

sufficient period to allow hydrolysis followed by further degradation to occur. The SGBR has 

been shown to be capable of treating a variety of wastewaters at high organic loading rates and 

short HRT in laboratory scale studies, and it has been successfully employed for pilot scale 

treatment of meat processing wastewater (Park et al., 2012; Roth and Ellis, 2004).  
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Suspended biomass within the interstitial void spaces was considered to be a significant 

factor in substrate removal. On the other hand, excessive biomass growth results in a decrease in 

the available area for the organic matter to diffuse into the granules, and therefore, potentially 

decreases the removal efficiency. Wastewater containing high levels of suspended solids may 

cause a gradual accumulation of slow and non-biodegradable solids within the void spaces 

between the granules. The slow hydrolysis of entrapped solids at low temperatures also results in 

solids accumulation. Consequently, as the pores become occupied by entrapped solids and 

biomass, a decrease in the effective porosity will lead to a rapid buildup of head loss, channeling, 

and short-circuiting of flow through the reactor. Previous studies have reported that the rate of 

head loss buildup increased with the increase in organic loading (Park et al., 2012; Roth and 

Ellis, 2004). Park et al. (2012) reported that the increase in the head loss occurred due to a 

clogged underdrain system caused by the solids accumulation in the reactor. Therefore, periodic 

backwashing is required to minimize problems associated with headloss buildup and clogging of 

the underdrain system. Additionally, the potential mixing effect created by the backwashing 

process can enhance the contact between the wastewater and the biomass. Although there have 

been several reports on backwasing method in operation of the SGBR, no information exist on 

backwashing parameters. In this study, optimum backwash flow rate and bed expansion were 

determined for proper backwashing and to prevent wash out of sludge granules from the SGBR.  

 

 

Materials and methods 

Backwashing of the SGBR treating dairy processing wastewater in Tulare, CA 

For the backwash process, the treated effluent from the storage tank (305 gallons) was 
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injected through side valves (2 ft from the bottom of the reactor) and underdrain pipes, and 

evenly distributed over the bottom of the SGBR as shown in Figure 3−1. Approximately, 4.7% 

of the total volume of treated wastewater was used for backwashing. The backwashed water was 

discharged into the main influent channel of the plant.  

 

Figure 3−1. Backwashing process 

 

Terminal settling velocity and bed expansion during backwash 

The terminal settling velocity of the granules can be calculated from balancing the 

gravitational and drag forces exerted on the granules. The particle Reynolds number, Ret 

(dimensionless) and the terminal settling velocity for spherical particles, ut (m/h) can be 

calculated using the following equation:  
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where g is the gravitational acceleration (9.81 m/s
2
), dp is the particle diameter (m), ρp and ρ are 

the density of particle and liquid, respectively (kg/m
3
), CD is the drag coefficient 

(dimensionless), and µ is the liquid viscosity (kg/m/s). The granules usually have a spherical 

form but they are not smooth or rigid, and thus CD for the granules is higher than that of smooth 

rigid spheres.  

 

Although several correlations have been proposed (Ganguly, 1987; Nicolella et al., 

1999; Perry and Green, 1997; Schiller and Naumann, 1935; Yu and Rittmann, 1997), CD for the 

granules in the intermediate flow regime (1 < Ret < 100) was estimated by using the following 

correlation proposed by Ro and Neethling (1990): 
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Based on the results of settling velocity, bed expansion during backwashing was 

estimated by using the empirical equation suggested by Richardson and Zaki (1954):  
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where u is the backwash velocity (m/h), n is the expansion index (dimensionless), H0 is the initial 

height of the granular bed (m), and He is the height of the expanded granular bed (m). The 

expansion index was determined as a function of the Reynolds number as shown below:  
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The bed voidage, ε0 for spherical particles usually varies from 0.4 to 0.45, and the bed voidage of 

0.4 was used. Substituting Eq. 3.7 into Eq. 3.4, the bed voidage can be written as follows:  
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The minimum backwash velocity 

The required minimum backwash velocity for fluidization of the granular bed, umf in the 



www.manaraa.com

46 
 

SGBR, could be predicted. Galileo number, Ga (dimensionless) represented the ratio of viscous 

and gravitational forces. Ga and umf were calculated following the equation below (Wen and Yu, 

1966):  
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Head loss in operating SGBR 

The porosity of the granular bed in the SGBR was estimated by using the Kozeny 

equation and head loss measurements. 
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where  h = Head loss, m 

 L = Depth of granular bed, m 

 k = Dimensionless Kozeny coefficient commonly about 5 

  = Viscosity of fluid, kg/m/s 

  = Porosity  
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 A/ν = 6/ ( d) = Grain surface area per unit of grain volume, m
-1

 

 V = Superficial approach velocity, m/s 

 g = Gravitational acceleration, m/s
2
 

  = Density of fluid, kg/m
3
 

  = Shape coefficient (0.75 assumed) 

 d = Diameter of granules, mm 

 

Results and discussion  

Terminal settling velocity and bed expansion during backwash 

The calculated settling velocities and Ret of the granules with different sizes using the 

solver function in Microsoft Excel are shown in Figure 3−2. 
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Figure 3−2. Estimated settling velocity and Ret of the granules 

 

The average granule size in this study was estimated based on the results of size analysis 

in previous studies since anaerobic granules were obtained from the same source (operating 

UASB treating brewery wastewater in La Crosse, Wisconsin) (Mach and Ellis, 2000; Park et al., 

2012; Roth and Ellis, 2003). Determination of granule size by image analysis was performed in 

the Materials Analysis and Research Laboratory of the Civil, Construction and Environmental 

Engineering Department at Iowa State University. Previous studies have reported that the 

granule size in the range of 0.7−1 mm in early stages of operation increased as the system 

operated over time. In general, the granules typically have a diameter from 0.5 to 2.5 mm and a 

density ranging from 1,000 to 1,050 kg/m
3
 (Ferry, 1993; Henze et al., 2008). Angelidaki et al. 

(2003) reported that settling velocities of granular sludge were in the range of 18–100 m/h. 

Figure 3−2 shows that the settling velocity varied from 0.1 to 92 m/h depending on the size and 

density of the granules. Assuming that the average diameter and density of the granules were 1.2 
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mm and 1,020 kg/m
3
, respectively, the settling velocity was found to be 19 m/h. Although the 

granular bed may be expanded to the same extent by lower backwash velocity at lower 

temperatures since the backwash water is denser, it was also assumed that the temperature of 

backwash water was 20ºC. 

 

From the results of settling velocity, the bed expansion during backwashing could be 

predicted using numerical relationships in terms of bed voidage as a function of fluid superficial 

velocity (Richardson and Zaki, 1954). Although the biogas may lead to more turbulence 

resulting in detachment of retained solids, several studies have reported that the effect of biogas 

on the bed expansion can be ignored thus those system were regarded as two phase (solid-liquid) 

systems (Leitao, 2004; Nicolella, 1999). The bed expansion was plotted against the backwash 

velocity for different size of granules with identical density of 1,020 kg/m
3
 as shown in Figure 

3−3. The predicted bed expansion increased with increasing backwash velocity. At the backwash 

velocity of less than 0.5 m/h, granules larger than 1.2 mm were not fluidized and remained at 

static conditions. 
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Figure 3−3. Relationship between backwash velocity and bed expansion 

 

The minimum backwash velocity 

The required minimum backwash velocity for fluidization of the granular bed, umf in the 

SGBR could be predicted to ensure adequate cleaning. Figure 3−4 shows that the backwash 

velocity of 1 m/h was sufficient to fluidize small granules or particles (dp < 0.6 mm). The 

minimum backwash rate of 0.67 m/h was required to initiate fluidization of the bed (dp=1.2 mm, 

ρp=1,020 kg/m
3
).  
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Figure 3−4. The minimum fluidization velocity for different size and density of the granules 

 

Head loss in operating SGBR 

The accumulated excess biomass and the retained solids may decrease the volume of 

void space in the granular bed leading to the rapid development of head loss through the system. 

Therefore, assuming the SGBR acted as a filter, the porosity of the granular bed in the SGBR 

was estimated by using the Kozeny equation (Eq. 3.13) and head loss measurements. However, 

the calculation of head loss using Kozeny equation was only useful to provide an estimation of 

the minimum head loss since the granular bed was a mixture of different sized granules and the 

fluid was wastewater. The average granule size of 1.2 mm was assumed for the calculation and a 

decrease in either granule size or porosity may cause an increase in head loss. The calculated 

porosity of the granular bed by observed head loss can be used to determine the backwash 

velocity for achieving optimum bed expansion.  
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Figure 3−5. Variations of porosity of the granular bed 

 

Figure 3−5 showed that the porosity of the granular bed varied from 0.11 to 0.47 and the 

average value was found to be 0.30. The bed porosity increased after backwash, resulting in an 

average porosity of 0.33 during the period of treatment of 1,500 gallons of wastewater after the 

backwash was completed. 

 

Figure 3−6. Required backwash velocity as a function of porosity of the granular bed 
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The required backwash velocity for different porosities to maintain a 50 percent 

expansion of the granular bed was estimated by using Eq. 3.6 (Figure 3−6). The results showed 

that as the bed porosity decreased, a moderate backwash rate for a longer duration was required. 

Also in the same manner, backwash velocity needed to be increased with increasing bed porosity 

as the accumulated biomass and suspended solids were removed from the bed during backwash.  

 

Backwashing process 

For the backwash process, the influent valve was closed. The treated effluent (305 

gallons) from the storage tank was injected through side valves and underdrain pipes, and evenly 

distributed over the bottom of the SGBR. Lower backwash flow rates are required until the bed 

is fluidized and the velocity is gradually increased to the desired backwash rate.  

 

Conclusions 

A proper backwash rate is necessary to ensure effective removal of dispersed fine sludge 

and excessive suspended solids. Lower backwash flow rates are required to avoid disrupting the 

granular bed and the velocity is gradually increased to the desired backwash rate. Assuming that 

the average granule size and density in this study are in the range of 0.8-1.6 mm and 1000-1060 

kg/m
3
, respectively, the minimum backwash rates varied from 0.02 to 4.34 m/h depending on the 

size and density of the granules. The degree of bed expansion during backwash of granular 

filtration in water treatment is usually in the range of 20 to 90% of the filter bed length. The 

proper backwash velocity ranged from 0.11 to 11.33 m/h based on the assumption that the bed 

porosity increased up to 0.4 and 50% expansion was selected as the optimum value. Therefore, 
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backwash at a flow rate of 10-15 gpm (3.91-5.87 m/h) was carried out in the pilot study of the 

SGBR (cross-sectional area: 6.25 ft
2
) treating dairy wastewater in Tulare, CA. 
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Introduction  

Slaughterhouses and meat processing plants consume substantial amounts of water 

ranging from 4.2 to 16.7 m
3
 per tonne of live carcass weight and 80% of the water is discharged 

as effluent during the multiple stage of processing. These stages include livestock reception, hide 

treatment, and cleaning of casings, offal and carcasses (Johns, 1995). Typical wastewater 

volumes generated from hog slaughterhouses range from 2.0 to 5.1 m
3
 per tonne of live weight 

kill (LWK) with an average of 3.9 m
3
 per tonne LWK. Meat processing wastewater typically 

contains blood, fat, and manure, resulting in high content of organic matter with a mean value of 

8.3 kg BOD5 per tonne LWK (US-EPA, 2002). The suspended and colloidal matter in the form of 

fats, proteins, and cellulose may have a detrimental effect on the performance of anaerobic 

reactors due to their insolubility and slow rate of degradation (Johns, 1995; Torkian, 2003).  

 

A variety of systems have been developed to provide primary, secondary, and tertiary 

treatment for removal of floating and settleable solids, BOD reduction, and nutrient removal, 

respectively, from meat processing wastewater. Dissolved air flotation (DAF) is widely used in 

the primary treatment for removal of suspended solids from the wastewater. Although physical 
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and chemical processes have been investigated, anaerobic biological processes have remained 

the preferred method for the treatment of slaughterhouse wastewater with high organic loads. 

Aerobic treatment processes, on the other hand, are not considered suitable for slaughterhouse 

wastewater due to high energy consumption for aeration, large quantities of sludge production, 

and oxygen transfer limitations (Gavala et al., 1996; Rajeshwari et al., 2000; Speece, 1996). 

Anaerobic lagoons are extensively used for the treatment of primary treated slaughterhouse 

wastewater. However, high rate anaerobic processes have been proposed as alternatives to 

anaerobic lagoons, including the anaerobic contact (AC), upflow anaerobic sludge blanket 

(UASB), anaerobic filter processes (AF), and anaerobic sequence batch reactor (ASBR) (US-

EPA, 2002; Johns, 1995). Sayed et al. (1993) evaluated the two stage UASB system for 

treatment of slaughterhouse wastewater. The two-stage DAF-UASB system achieved 90% COD 

reduction at an HRT of 10h and an OLR of 4 kg COD/m
3
/d, which was proposed as an 

alternative to the two stage UASB system (Manjunath et al, 2000). Ruiz et al. (1997) reported 

sludge flotation and significant decrease in total COD removal efficiency down to 59% at OLRs 

of 6.5 kg COD/m
3
/d from the UASB reactor. The total COD removal efficiency in the AF was 

also dropped to less than 50% at an OLR higher than 6 kg COD/m
3
/d. An anaerobic fluidized-

bed reactor treating slaughterhouse wastewater achieved 75 % COD reduction at an OLR of 54.0 

kg COD/m
3
/d (Borja et al., 1995). The feasibility of the ASBRs was demonstrated in laboratory 

reactors at a temperature of 30ºC treating slaughterhouse wastewater. 90 to 96 % COD removal 

was achieved at OLRs from 2.07 to 4.93 kg COD/m
3
/d (Massé et al., 2000). The treatment of 

slaughterhouse wastewater was also carried out in the two pilot-scale SGBR systems (Park et al, 

2012; Roth and Ellis, 2004).  
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The SGBR is a recently developed high rate anaerobic system. The key design feature of 

the SGBR is higher biomass concentration since a deep bed of active granules is utilized, 

resulting in increased treatment efficiency. Besides high COD removal efficiency, operational 

simplicity and lower capital and operating costs are also advantages of the SGBR. The feasibility 

of the reactor has been demonstrated in a number of laboratory and pilot studies on wastewater 

treatment including municipal wastewater, landfill leachate, and non-fat dry milk (Debik et al., 

2005; Evans and Ellis, 2005; Mach and Ellis, 2000).  

 

A number of models have been developed to describe the kinetics of substrate utilization 

for anaerobic treatment processes. The Stover-Kincannon model and the Grau second-order 

model are the most widely used mathematical models for determining kinetic coefficients. These 

models have been applied in studies on the treatment of food processing wastewater using the 

anaerobic contact reactor, soybean processing, papermill, simulated starch wastewater with the 

anaerobic filter, winery wastewater with the anaerobic fixed bed reactor, and textile and 

municipal wastewater using the UASB (Ahn et al., 2000; E.Senturk et al., 2010; Isik et al., 2005; 

Rangaraj et al., 2009; Yilmaz et al., 2008; Yu et al., 1998). However, kinetic models of the 

SGBR for wastewater treatment from hog slaughterhouses have not been investigated. Therefore, 

the objective of this study was to determine the kinetics of the two pilot-scale SGBR systems 

(hereafter referred to as R1 and R2) and to compare kinetic models applied for describing the 

substrate utilization of the SGBR treating slaughterhouse wastewater. In order to determine 

kinetic coefficients, mathematical models including the Grau second-order model and the Stover-

Kincannon model were applied to the SGBR.  
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Materials and methods   

 Wastewater source and characteristics 

Wastewaters generated from the meat processing plants were pretreated by the dissolved 

air floatation (DAF) system in the plant, and then pumped into feed tank for storage of influent 

wastewater due to the hourly and daily fluctuations in wastewater discharge quantity and quality. 

The average pH levels were neutral or slightly acidic. Chemicals such as sodium hydroxide 

(NaOH) and sodium bicarbonate (NaHCO3) were not added to the influent for pH adjustment. 

The average BOD5 and COD values showed that meat processing wastewaters had a relatively 

high organic strength. In addition, the wide ranges for BOD5 and COD concentrations of 

wastewaters reflected that daily, weekly, and seasonal variations in discharge quality from the 

plant. Slaughterhouse wastewater also contained high concentrations of suspended solids (SS), 

originating from pieces of fat, grease, hair, flesh, manure, and undigested feed (Bull et al., 1982). 

The BOD5/COD ratio was used for the determination of the biodegradability of the organic 

compounds in slaughterhouse wastewater. The ratio between 0.4 and 0.8 is considered to be 

readily biodegradable (Metcalf and Eddy, Inc., 1991). The observed ratios were greater than 

more than 0.4, with mean values of 0.49 and 0.73 for R1 and R2, respectively, which indicated 

that most of the organic compounds in these wastewaters were fairy biodegradable. The 

characteristics of slaughterhouse wastewater are given in Table 4−1.   

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

59 
 

Table 4−1. Characteristics of slaughterhouse wastewater 

Parameter Value 

 R1 R2 

pH 6.90 ± 0.44 5.64 ± 0.26 

Alkalinity, mg/L as CaCO3 630 ± 107 264 ± 157 

TSS, mg/L 840 ± 491 2,355 ± 1,321 

VSS, mg/L 704 ± 431 2,255 ± 1,319 

Total COD, mg/L 3,137 ± 814 7,864 ± 4,294 

Soluble COD, mg/L 1,749 ± 368 3,489 ± 985 

BOD5, mg/L 1,543 ± 202 5,732 ± 1,522 

VFA, mg/L as HAc 486 ± 159 936 ± 385 

 

 

Reactor set-up and operation  

The two pilot-scale SGBR systems fabricated with polypropylene were installed at meat 

processing plants in Austin, Minnesota and Denison, Iowa. The pilot-scale SGBR systems 

consisted of a 1000-gallon reactor with different working volumes (700 and 500 gallons for R1 

and R2, respectively), storage tanks for influent and effluent, ¾-inch PVC piping and fittings, a 

ChronTrol controller/timer, Masterflex peristaltic pumps, and a gas meter. The anaerobic 

granules were obtained from an operating UASB at City Brewing Company in La Crosse, 

Wisconsin. R1 and R2 reactors were seeded with approximately 650 and 400 gallons of 

anaerobic granules, respectively. The anaerobic granules were transferred using a progressive 

cavity pump to avoid the disintegration of the granules. The meat processing wastewater was 

pumped into a feed tank from the DAF for storage of influent wastewater. Feed tanks were 

installed to compensate for fluctuations in wastewater pH and organic strength. The wastewater 

from feed tank was then fed into the SGBR using peristaltic pump. The influent wastewater was 

evenly distributed over the granular bed using perforated distribution pipes located in the 

headspace of the reactor. Underdrain system consisted of perforated ¾-inch PVC pipes within 

the graded gravel layer installed along the bottom of the reactor, designed to provide uniform 
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collection of the treated effluent. The backwash water using collected effluent was also 

uniformly distributed throughout the granular bed by the underdrain system. The biogas 

produced by the system was passed through the gas scrubber filled with a mixture of coarse and 

fine steel wool to remove hydrogen sulfide (H2S) and measured using wet-test gas meters 

(Schlumberger Industries, Dordrecht, The Netherlands). The pressure and water level changes 

inside the reactor were monitored with the attached manometer and side mounted tubular level 

indicator, respectively. The liquid level was maintained at working volume of each reactor by 

using an adjustable effluent overflow pipe. R1 and R2 reactors were continuously operated at the 

average OLRs of 1.09 and 1.41 kg COD/m
3
/d, respectively, during the start-up period. After the 

acclimation period, the average organic loading rates for R1 and R2 were increased stepwise to 

2.91 and 6.19 kg COD/m
3
/d by shortening the HRTs stepwise from 48 to 28 and 20 h, 

respectively.  

 

Data collection and analytical methods 

The parameters including chemical oxygen demand (COD), soluble chemical oxygen 

demand (SCOD), volatile fatty acids (VFAs), biochemical oxygen demand (BOD), total 

suspended solids (TSS), and volatile suspended solids (VSS) were determined in accordance 

with Standard Methods for the Examination of Water and Wastewater (APHA,1998). The 

influent and effluent wastewater pH were measured using an electronic pH meter (Thermo Orion 

210A). 24-hour composite influent and effluent samples were collected from storage tanks for 

analysis. The biogas was measured with wet-test gas meters, and collected with 100-mL glass 

gas sampling tube. The biogas composition was analyzed by the laboratory in the meat 

processing plant and ISU analytical laboratory using a Gow Mac gas chromatograph. Hydrogen 
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sulfide (H2S) measurement was performed on-site using a Dräger accuro gas detector pump with 

H2S detector tubes.  

 

Results and discussion  

Performance of the SGBR systems 

Influent COD concentration and COD removal rates under various organic and hydraulic 

loading conditions were summarized in Table 4−2. During start-up period, the COD removal 

efficiencies of 94 and 92% were observed in R1 and R2 at the initial OLR of 1.09 and 1.41 kg 

COD/m
3
/d, respectively. The COD removal rate in R2 at OLR of 1 kg COD/m

3
/d was 

significantly improved as the system stabilized. Both SGBR reactors achieve high organic 

removal rates within a very short start-up period (21 days for R1 and 25 days for R2) since the 

anaerobic granules obtained from an operating UASB were used as seed granules. The average 

OLR applied to R1 and R2 were increased stepwise from 1.09 to 2.91 and from 1.41 to 6.19 kg 

COD/m
3
/d, respectively, by shortening the HRT.  
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Table 4−2. Performance of two pilot scale SGBR systems treating slaughterhouse 

wastewater under steady state condition 

Reactor Day HRT (h) CODInf (mg/L) OLR (kg COD/m
3
/d) COD removal (%) 

R1 

1-8 48 2179 ± 94 1.09 93.4 ± 0.3 

9-43 40 2533 ± 450 1.52 94.0 ± 0.8 

44-64 36 3225 ± 456 2.15 94.9 ± 0.9 

65-97 32 3728 ± 517 2.80 94.4 ± 0.8 

100-128 28 3395 ± 590 2.91 93.5 ± 1.2 

Average 3137 ± 711 2.25 94.1 ± 1.0 

R2 

1-30 96 5659 ± 1753 1.14 92.1 ± 5.8 

31-62 48 6773 ± 1722 3.39 95.6 ± 2.1 

63-132 36 9238 ± 3141 5.52 96.6 ± 1.4 

133-174 30 8494 ± 2598 6.00 96.0 ± 1.5 

177-216 24 6556 ± 1899 5.47 95.7 ± 1.8 

217-265 20 6710 ± 1907 6.19 95.4 ± 2.0 

Average 7864 ± 4294 4.84 95.4 ± 2.9 

 

The effect of the organic loading rate on the process performance was evaluated based on 

the COD removal efficiency in the SGBR systems with different OLR (Figure 4−1). R1 and R2 

attained the average COD removal rates of 94 and 95% at OLR ranging from 1.01 to 3.56 and 

0.94 to 12.76 kg COD/m
3
/d, respectively. The variation of organic loading rates for R2 was due 

to high fluctuation of COD concentrations from the DAF unit ranging from 2720 to 15950 mg 

COD/L. Both SGBR reactors could cope with hydraulic overloading by reducing the HRT 

and organic shock loads caused by sudden increase in waste strength. In addition, high organic 

removal efficiencies were maintained even at the maximum organic loading rate applied to each 

system. The average values of COD removal efficiency from both SGBR reactors were not 

decreased with increase in loading rates.  

 

5
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Figure 4−1. COD removal efficiency in the SGBR systems with different OLR 

 

Monitoring parameters and the stability of the SGBR 

The pH, alkalinity, VFA, and ammonia are important parameters for monitoring and 

control of the anaerobic microbial treatment process. As presented in Table 4−3, the average 

effluent pH, alkalinity, and VFA were 7.49, 1,158 mg/L as CaCO3, and 21 mg/L as HAc for R1 

and 7.27, 715 mg/L as CaCO3, and 18 mg/L as HAc for R2, respectively. The pH values of the 

influent wastewater have varied from 6.1 to 7.9 for R1 and from 4.8 to 6.3 for R2, respectively. 

The pH values of the effluent were maintained in the optimal range (6.5 to 8.2) for 

the methanogenic microorganisms (Speece, 1996). In addition, the ratio of VFA to alkalinity, 

indicating process stability, was also monitored (Ripley et al., 1986). A VFA to alkalinity ratio 
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less than 0.3 reflects stable operating conditions, while a ratio between 0.3 and 0.4 indicates a 

potential for upset and possible need for corrective action. When the ratio exceeds 0.8, 

methanogens can be inhibited by VFA accumulation and the digester becomes acidified (WPCF 

Manual of Practice No. 16, 1987). Both SGBR reactors were operated at VFA/alkalinity ratio 

less than 0.03 on average as shown in Figure 4−2. These lower ratios were attributed to low 

effluent VFA concentrations and the increase in effluent alkalinity observed in both reactors. It 

could have resulted from favorable conditions for the methanogenic microbes and the generation 

of bicarbonate from the conversion of protein to ammonia during the operation. Ammonia–N 

released by the destruction of protein reacts with carbon dioxide produced by the biochemical 

reaction to produce ammonium bicarbonate. This effect contributed sufficient buffering capacity 

in the SGBR system to tolerate pH variations so that pH adjustments were not necessary. This 

fact may reduce operating costs during a full-scale anaerobic treatment of the slaughterhouse 

wastewater. A pH in the normal range and low VFA/alkalinity ratio indicate that the anaerobic 

microorganisms were operating in a stable condition without accumulation of fermentation 

intermediates such as VFAs.  

Table 4−3. Variation of pH, VFA, and alkalinity of the two pilot scale SGBR systems 

Reactor Day HRT(h) pH VFA (mg/L as HAc) Alkalinity (mg/L as CaCO3)  

R1 

1-8 48 7.59 ± 0.15 21 ± 4 1,084 ± 116  

9-43 40 7.78 ± 0.29 20 ± 5 1,156 ± 120  

44-64 36 7.49 ± 0.25 22 ± 5 1,114 ± 265  

65-97 32 7.31 ± 0.14 20 ± 2 1,139 ± 59  

100-128 28 7.32 ± 0.19 21 ± 6 1,233 ± 74  

Average 7.49 ± 0.29 21 ± 5 1,158 ± 142  

R2 

1-30 96 6.88 ± 0.19 16 ± 4 613 ± 43  

31-62 48 7.19 ± 0.3 13 ± 2 516 ± 80  

63-132 36 7.44 ± 0.29 19 ± 7 786 ± 114  

133-174 30 7.36 ± 0.19 19 ± 6 758 ± 125  

177-216 24 7.25 ± 0.2 21 ± 10 718 ± 103  

217-265 20 7.18 ± 0.23 19 ± 4 613 ± 43  

Average 7.27 ± 0.28 18 ± 6 715 ± 132  

5
6
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Figure 4−2. Variation of pH and VFA/ALK in the SGBR systems 

 

 

 

Conventional Monod kinetics 

The rate of change of biomass in the reactor depends on the influent and effluent biomass 

and the biomass growth and decay in the system.  
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Q = flow rate of influent, L/day  

V = reactor volume, L 

X0 and XE = microorganisms in influent and effluent, g VSS/L 

µ = specific growth rate, 1/day  

Kd = endogenous decay coefficient, 1/day 

 

The solids retention time (SRT), θC is defined as the average time of the retained biomass 

in the system, which is also called as mean cell residence time (MCRT). It is the ratio of the total 

biomass in the reactor to the biomass in the effluent and wasted biomass from the system during 

the backwash procedure in a given time period as given below:  

 

C

E

VX

QX
                                                                                                                                                      (4.2) 

 

 

The calculated average SRT in R1 and R2 were 243 and 157 days, respectively. There 

was a trend of decreasing SRT with decrease in HRT in both SGBR systems. Evans (2004) also 

reported that the SRT in the SGBR was much higher at 15ºC than at 8ºC at the same HRT, and 

the SRT increased with increasing HRT.  

 

The relationships between the specific growth rate of the microorganisms and the 

concentration of the limiting substrate for growth were described by the Monod equation: 
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   max

S

S

K S
 


                                                                                                                      (4.3) 

 

where  µmax = maximum specific growth rate, 1/day 

KS = half velocity constant, mg/L 

  

Assuming biomass concentrations are at steady state (dX/dt = 0) and microorganisms in 

the influent are negligible, Eq. (4.1) can be simplified as follows:  

 

       E d

Q
X K X

V
                                                                                                                 (4.4) 

 

              E
d

QX
K

VX
                                                                                                                 (4.5) 

 

1
  d

C

K


                                                                                                                                  (4.6) 

 

1
          max d

S C

S
K

K S



 


                                                                                                        (4.7) 

 

Eq. (4.8) can be obtained from Eq. (4.7) to predict the effluent concentration under 

steady-state conditions as follows: 
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1( )

1

S
C

max
C

d

d

K K

S
K








 
                                                                                                                  (4.8)  

 

The rate of change of substrate concentration in the system can be described by   

 

0

d
             

d

S Q Q X
S S

t V V Y


                                                                                                  (4.9) 

 

At steady state conditions, the accumulation term, dS/dt, reduces to zero. Eq. (4.9) can be 

rearranged by substituting Eq. (4.6) for µ, as follows:  

 

0 1 1( ) 1 1
  d

d

H C C

S S K
K

Y Y YX  

 
    

 
                                                                                      (4.10) 

 

The values of Y and Kd can be determined from the slope and intercept of equation of the 

straight line by plotting Eq. (4.10). Eq. (4.7) can be rearranged to obtain values of µmax and KS as 

shown below: 

 

1 1
       

1

C S

C d max max

K

K S



  
 


                                                                                                     (4.11) 
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Figure 4−3. Monod kinetic application for Y and Kd 

 

 

 

The growth yield coefficient, Y, determined from the slope was 0.10 and 0.09 g VSS/g 

COD for R1 and R2, respectively (Figure 4−3). The values of biomass yield indicates overall 

yield for the mixed culture of acidogens (0.14-0.17 g VSS/g COD) and acetoclastic methanogens 

(0.01-0.05 g VSS/g COD). The estimated decay coefficient for R1 and R2 were 3.56 × 10
-4

 day
-1

 

and 8.27× 10
-4

 day
-1

, respectively. Yoochatchaval et al. (2008) also have reported that the growth 

yield of retained sludge (0.13 g VSS/g COD) and very low decay constant of 1.0 × 10
-4

 day
-1

 

from the EGSB reactor treating low strength wastewater at 20ºC.  
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Figure 4−4. Monod kinetic application for µmax and KS  

Obtained values of µmax and KS for R1 were 0.011 day
-1

 and 257 mg COD/L, respectively. 

However, Monod kinetics could not describe the performance of R2.  

 

Grau second order model for SGBR 

The general equation of the Grau second order kinetic model is as follows:  
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where ks is the substrate removal rate constant (1/d), X is the average biomass concentration in 

the reactor (mg VSS/L), Se and S0 are the effluent and influent substrate concentration (mg 

COD/L), respectively. Eq. (4.12) can be integrated and then linearized as follows:  

 

0 0

0 e  

H
H

S

S S

S S k X


 


                                                                                                                 (4.13) 

 

If the second term on the right side of the equation is assumed to be constant, Eq. (4.13) 

can be written as follows: 

 

0

0 e

H
H

S
b a

S S


 


                                                                                                                     (4.14) 

 

 H
Hb a

E


                                                                                                                             (4.15) 

 

where (S0−Se)/S0 is the substrate removal efficiency and symbolized with E. In order to 

determine the second-order substrate removal rate constant kS, a and b, Eq. (4.15) can be plotted 

(Figure. 4−4).  
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Figure 4−5. Second-order kinetic model application 

 

 

The kinetic parameters, a and b, can be calculated from the intercept and slope of the 

straight line, respectively. Calculated values of a and b were found as 0.017 and 1.05 for R1, and 

0.0045 and 1.0396 for R2, respectively, with a high correlation coefficient (R
2 

> 0.99). Assuming 

that the average concentration of biomass in the SGBR was 24,000 mg/L, the second-order 

substrate removal rate constants can be obtained from value a. Estimated values of a and b can 

be used to predicting effluent concentrations. Eq. (4.14) can be written as below:  
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0 1 for R2
0.0045 1.0396

S S
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

 
  

 
                                                                                (4.17) 

Predicted COD concentrations were calculated by using Eq. (4.16) and (4.17) based on 

Grau second-order kinetic model. Figure 4−6 shows the relationship between the measured and 

predicted COD concentrations. The predicted values were consistent with the experimental data 

in R1 compared to R2. This was possibly due to the highly fluctuating influent COD levels in 

R2. Observed COD removal rates were 94% in R1 and 95% in R2. Equation for predicted COD 

in R1 and R2 estimated 94% and 96% removal efficiency in R1 and R2, respectively.  

 

 
 

Figure 4−6. Observed and predicted COD concentrations for Grau second order model 
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The second-order substrate removal rate constant k2 (a=S0/k2X) were 3.8 day
-1 

for R1 and 

34 day
-1

 for R2. Higher value of second-order substrate removal rate constant in R2 was in the 

similar range with values for UASBR treating young landfill leachate (Ozturk et al., 1998).   

 

Modified Stover–Kincannon model for SGBR 

The Stover-Kincannon model, originally proposed for rotating biological contactors 

(RBCs), assumed that the substrate utilization rate could be expressed as a function of the 

organic loading rate for biofilm reactors. The contribution of the suspended biomass to substrate 

removal was assumed to be negligible in comparison to the attached biomass on the support 

media. Therefore, the disc surface area of the rotating biological contactor was used to represent 

the total attached-growth active biomass concentration in the original model (Kincannon, 1982). 

However, the suspended microorganisms within the media interstitial void spaces between the 

packing and biogrowth was considered to be a significant factor in substrate removal in 

anaerobic filters (Song and Young, 1986, Tay et al., 1996) and the effective volume of the 

reactor can be used instead of the surface area of the support media (Yu HQ et al., 1998). 

Therefore, at steady state, the modified Stover–Kincannon model can be expressed as follows: 

 

 
max 0

B 0

/d
   

d /

U QS VS

t K QS V



                                                                                                             (4.18) 

where dS/dt is defined as follows: 

 0

d

d
e

S Q
S S

t V
                                                                                                                        (4.19) 

where dS/dt is the substrate utilization rate (g/L/d), Umax is the maximum removal rate constant 

(g/L/d), KB is the saturation value constant (g/L/d), Q is the flow rate (L/d), V is the working 
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volume of the reactor (L), and S0 is the influent substrate concentration (g TCOD/L), and Se is 

the effluent substrate concentration (g TCOD/L). Eq. (4.20) can be obtained from the 

linearization of the inverse of Eq. (4.18) and Eq. (4.19):  

1

B

0 max 0 max

d 1
   

d ( )e

KS V V

t Q S S U QS U



 
   

 
                                                                            (4.20) 

If the inverse of the substrate utilization rate is plotted against the inverse of the total 

loading rate, the linear relationship can be obtained as shown in Figure 4−7.  

 

 

 
 

Figure 4−7. Modified Stover-Kincannon model application 
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The values of Umax and KB were obtained from the slope and intercept of Eq. (4.20). 

According to Figure 4−7, the predicted values of Umax and KB were 192.3 g COD/L/d and 206.6 

g COD/L/d for R1, and 243.9 g COD/L/d and 259.5 g COD/L/d for R2, respectively. The 

predicted values of Umax were significantly higher than the maximum OLR (3.56 and 12.76 g 

COD/L/d for R1 and R2, respectively) applied to the system during the study, indicating the 

potential for the SGBR to deal with high strength slaughterhouse wastewater. A mass balance of 

substrate is expressed as follows: 

0 e

dS
QS QS V

dt

 
   

 
                                                                                                                (4.21) 

By combining Eq. (4.18) and (4.21), the effluent substrate concentration can be obtained 

as follows: 

 
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e

U QS V
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Figure 4−8. Observed and predicted COD concentrations for Modified Stover-Kincannon 

model 

 

 

Figure 4−7 shows the relationship between the observed and predicted effluent COD 

concentration. However, predicted values were usually higher than experimental values. This 

may be due to the entrapment of particulate COD within the SGBR.     
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Table 4−4. Comparison of the kinetic coefficients  

Substrates Type of reactor 
Temperature 

(°C) 

Umax 

(g COD/L/d) 

KB 

(g COD/L/d) 
References 

Slaughterhouse SGBR (R1) 22 ± 3 192.3 206.6 This study 

Slaughterhouse SGBR (R2) 20 ± 3 243.9 259.5 This study 

Poultry 

Slaughterhouse 
SGBR 22 164.48 177.21 E. Debik, 2009 

Food Processing Anaerobic contact reactor 35 ± 2 22.925 23.586 E.Senturk, 2010 

Milk permeate 
Anaerobic moving bed 

biofilm reactor 
35 89.3 102.3 Wang, 2009 

Simulated textile 

wastewater 
UASB 30 7.5 8.2 

Isik & sponza, 

2005 

Simulated starch Anaerobic Filter 35 49.8 50.6 
Ann & Foster, 

2000 

Simulated starch Anaerobic Filter 55 667 702 
Ann & Foster, 

2000 

Soybean processing Anaerobic Filter 35 ± 1 83.3 85.5 Yu, 1998 

 

The kinetic coefficients obtained in the current study were compared with those obtained 

from other anaerobic processes for the various substrates (Table 4−4). Although these values 

were estimated from various reactor configurations, wastewater characteristics, and operating 

conditions, higher values were obtained from SGBR systems. The thermophilic reactors treating 

simulated starch and paper mill wastewater had a significantly higher maximum utilization rate 

than the mesophilic reactors (Ahn and Forster, 2000; Yilmaz et al., 2008). These results showed 

that the SGBR systems under ambient conditions achieved similar or even higher maximum 

utilization rates while other anaerobic processes were operated under mesophilic condition. In 

terms of maximum utilization rate, the SGBR systems were not significantly affected by low 

temperatures.  

 

Conclusions 

The two pilot-scale SGBR exhibited excellent process performance for the treatment of 

slaughterhouse wastewater. R1 and R2 attained the average COD removal rates of 94% and 95% 

5
6
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at OLR ranging from 1.01 to 3.56 and 0.94 to 12.76 kg COD/m
3
/d, respectively.  

 

During the operation of reactors, the solid retention times of 243 and 157 days for the R1 

and R2, respectively were obtained. Henze (2008) suggested that the minimum SRT should 

always three times longer than the doubling time of the microorganisms. Methanosaeta typically 

has a doubling time of 4-9 days while Methanosarcina has shorter doubling times (1-2 days) 

(Zinder, 1988).  Therefore, long SRT enabled slow growing methanogens to get sufficient time to 

grow and stabilize, and promoted the proliferation of methanogenic bacteria in the granular 

sludge.  

 

It was shown that Monod kinetics is not very appropriate for describing the performance 

of the SGBR for treating slaughterhouse wastewater since Monod kinetics was demonstrated 

using pure cultures and simple substrates. Digestion of complex organic matters could result in 

deviation from the Monod relationship in the SGBR. Only the hydrolyzed compounds may be 

considered as the growth-limiting substrate in terms of the Monod kinetics. A significant 

correlation was also not found between predicted and measured COD concentrations for Grau 

second-order kinetic model and modified Stover-Kincannon model since high COD removal 

efficiencies were maintained regardless of organic loading rates. Predicted values by modified 

Stover-Kincannon model were usually higher than experimental values. This may be due to the 

entrapment of particulate COD within the SGBR.     
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 CHAPTER 5. SEPTIC WASTEWATER TREATMENT USING 

RECYCLED RUBBER PARTICLES (RRP) AS BIOFILTRATION MEDIA 

 

Jin Hwan Oh and Timothy G. Ellis 

Department of Civil, Construction, and Environmental Engineering, 

Iowa State University, Ames, Iowa, 50011 U.S.A. 

 

 

 

Introduction 

Onsite wastewater treatment systems, commonly known as septic systems, are the most 

widely used systems in suburban and rural areas where public sewer systems are not available to 

handle household wastewater. Approximately one quarter of the population in the United States 

is served by onsite wastewater treatment systems. The most common onsite treatment system is 

the septic tank and soil absorption system also known as the drainfield or leach field.  

 

The main functions of a septic tank are to separate solids from the wastewater, provide 

anaerobic digestion of organic matter, and provide storage for the sludge and scum. The septic 

tank allows the heavy solids to settle on the bottom, forming a sludge layer, and the grease and 

fatty solids to float to the top, forming a scum layer. Performance of septic tanks depends on the 

characteristics of influent, design, operation, and maintenance of the septic tank. Typical septic 

tank removal efficiencies have been reported as follows: biochemical oxygen demand (BOD5) 

31-68%, total suspended solids (TSS) 30-81%, fecal coliform 25-66% (Boyer and Rock, 1992; 

Rahman et al., 1999; Rock and Boyer, 1995; Seabloom et al., 1982;). However, septic tank 

effluent (STE) still contains disease-causing pathogens and excessive nutrients such as nitrogen 

and phosphorus. Therefore, effluent flows from the septic tank outlet to a subsurface wastewater 
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infiltration system (SWIS) that includes soil, sand, or other media for further treatment through 

biological processes by microorganisms, chemical adsorption, and physical filtration. 

Approximately one-third of the land area in the United States is suitable for conventional soil 

absorption systems. Alternative septic systems can be used for the sites where an existing septic 

system has failed or site conditions, such as high groundwater table or small lot size, are not 

suitable for the installation of conventional septic systems.  

 

Filtration systems are one of the most widely used alternative septic systems. Several 

types of permeable material, including sand, gravel, peat, and synthetic materials such as textile, 

glass, or foam, have been used as the filter media. As septic tank effluent is distributed across the 

top of the media and passes through the filter, most of the suspended solids are filtered and 

dissolved organic compounds are removed by adsorption and biodegradation within biofilms 

developed from the growth of microorganisms on the surface of the media. Sand filters are the 

most common type of media filtration system used in conjunction with septic systems. If the 

system is hydraulically overloaded, the accumulation of excessive biomass or entrapped organic 

matter due to decreased rates of decomposition can occupy the pore space, resulting in filter 

clogging and surface ponding. Organic filter media such as peat may decompose and degrade 

over time, thus requiring periodic replacement.  

 

Recycled rubber has been used in various applications, including asphalt, rubber mulch, 

and aggregate substitute in drainage systems for landfills and septic systems. Several 

studies have concluded that the effects of tire derived aggregate on water quality were negligible 

and the concentrations of contaminants leaching from scrap tires such as Fe, Mn, Zn and Al were 
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below the limits set by drinking water standards (Downs et al., 1996; Edil and Bosscher, 1992; 

Humphrey et al., 1997; Humhrey and Katz, 1996; Lerner et al, 1993; O’Shaughnessy and Garga, 

2000; Sengupta and Miller, 2000). Recycled rubber has also been used as packing media in 

trickling filters for landfill leachate treatment and, biofilter media for volatile organic compounds 

and odor removal (Mondal and Warith, 2008; Park et al., 2011). Recycled rubber particles (RRP) 

can be used as filter media or substitutions for gravel in septic system drainfields due to the high 

surface area for attached growth of biofilm as well as economic benefits. Therefore, in this study 

biofilter systems using three different filter media, including RRP, peat, and gravel, were 

demonstrated at laboratory scale for treating septic tank effluent and the treatment performance 

of a recycled rubber particles system was compared to a conventional gravel system and a peat 

moss system. 

 

 

Materials and methods   

Laboratory-scale biofilter reactors configuration and operation 

Three identical laboratory-scale columns packed with different types of media (RRP, 

peat, and gravel) for treating septic tank effluent were operated in single pass modes to evaluate 

the performance of three different filter media. A schematic of the biofilters is shown in Figure 

5−1. Each biofilter made of Plexiglass had a width of 0.5 ft and an overall height of 3 ft. Each 

column was filled with biofilter media to provide a total bed depth of 2.7 ft and a total bed 

volume of approximately 5 gallons. Pea gravel layers, approximately 4 inches, were placed at the 

bottom of both RRP and peat columns to support filter media and prevent the underdrain from 

clogging. Septic tank effluent was fed intermittently into biofilters by a timer-controlled pump, 
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and then distributed evenly over the surface of the media through polyethylene bottles with 

perforated bottom. The reactors were operated at room temperature. Septic tank effluent can vary 

in quality depending on the characteristics of the wastewater and condition of the tank. The 

septic tank effluent used in this study was collected from residential area, having higher 

suspended solids and organic matter concentrations in comparison to typical septic tank effluent 

as presented in Table 5−1 (Bounds, 1997; Crites and Tchobanoglous, 1997; Long, 1997; Otis et 

al., 1973; Seabloom et al., 1982).  

 

Table 5−1. Characteristics of septic tank effluent 

Parameter 
Average concentration (mg/L) 

Influent Typical STE 

TSS 401 ± 456 44-118 

VSS 341 ± 379 N/A 

COD 468 ± 348 228-338 

BOD5 204 ± 81 85-190 

NH3-N 58.2 ± 18.8 30-50 

 

Each biofilter was rinsed intermittently with tap water prior to the start of the experiment 

for 7 days to remove any impurities and minimize the potential interference in chemical oxygen 

demand (COD) determination, which could be caused by organic matter leaching from biofilter 

media. For enhanced biofilm formation during the start-up period, each biofilter was seeded with 

5 L of activated sludge (1.0 g/L VSS) from the Boone Water Pollution Control Plant, and the 

hydraulic loading rate (HLR) was maintained at 1.4 gallon per day per square foot (gpd/ft
2
).  
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Figure 5−1. Schematic of biofilter systems 

 

Analytical procedures   

Influent and effluent samples were analyzed three times a week to monitor the 

performance of the reactor.  The water quality parameters including chemical oxygen demand 

(COD), biochemical oxygen demand (BOD), total suspended solids (TSS), and volatile 

suspended solids (VSS), were measured in accordance with Standard Methods (APHA, 1998). 

COD was measured using the Closed Reflux Titrimetric Method (Standard Methods, section 

5220 C). TSS and VSS were analyzed by the filtration method (Standard Methods, section 2540 

D and E) with glass fiber filter paper (Whatman GF/C, 1.2 μm). Ammonia nitrogen (NH3-N) was 

measured according to the ammonia-selective electrode method (Standard Methods, section 4500 

D and E). Nitrate nitrogen (NO3-N) was determined by cadmium reduction method using a 

HACH DR 3000 spectrophotometer. Fecal coli form was determined using A-1 medium test kit 

from HACH. 
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Ammonia adsorption batch test  

Batch adsorption tests were conducted to evaluate the ability of RRP to adsorb ammonia. 

Various RRP dosages ranging from 0.2 to 10g were added into Erlenmeyer flasks filled with 

150mL of ammonium chloride solution with a fixed concentration of 10mg/L NH4
+
. Each 

mixture was shaken for 5 min using an automatic shaker (Incubator shaker series 2, New 

Brunswick Scientific Co., Inc.) at 180 rpm, and then allowed to settle for 5 min. Supernatant 

solutions were analyzed for ammonia concentration. Amounts of ammonia adsorbed by RRP 

were calculated as the difference between amounts of ammonia initially added and those 

remaining in the supernatant solutions. The ability of RRP to adsorb ammonia was assessed 

using Freundlich and Langmuir isotherms.  

 

Results and discussion 

Start-up period of laboratory-scale biofilter reactors  

Significant higher concentrations of COD were observed in the effluent from peat and 

RRP biofilters during the initial operation period as shown in Figure 5−2. Therefore, each 

biofilter was flushed with tap water prior to the start of the experiment to wash off any impurities 

and prevent interferences in analytical measurements. Colored effluent containing small peat 

particles was released from the peat media. Peat consists primarily of organic matter and it 

leaches colored organic matter such as humic and fulvic acids. These leachates may contribute to 

the effluent COD and lower apparent treatment efficiency. Rock et al. (1984) concluded that the 

relatively lower COD reduction rates resulted from the organic matter leached from the peat 

itself. Viraraghavan and Ayyaswami (1988) and Viraraghavan and Rana (1991) also reported 

COD contribution by the peat itself. In the RRP filter, the increase in COD concentrations could 
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possibly be attributed to leaching of dissolved organic compounds such as benzothiazole 

derivatives, and some particulate organic matter from the RRP.  

 

Figure 5−2. COD concentrations in flush water 

The effluent COD concentration decreased to 165 and 220 mg/L in RRP and peat media, 

respectively, during the flushing period. Although the effluent COD concentrations in both 

systems were improved, different leaching patterns were observed during this period. Since the 

water was unable to penetrate into the rubber, releases of easily leachable compounds would 

occur predominantly at the surface of the rubber over a relatively short period of time. The rate 

of leaching significantly decreased with the number of washes and exposure time over the first 

four days. This finding is consistent with previous studies reporting the decrease in leaching rate 

of dissolved organic carbon with time (Abernethy et al., 1996; O’Shaughnessy and Garga., 

2000). The effluent COD in peat biofilter was stabilized after three days in the concentration 

range of about 220 to 370 mg/L, whereas the leach rate for organic matter from RRP continued 

to decrease at the end of this period.   

After the period for prewash procedures, the biofilters were fed with septic tank effluent 
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at the hydraulic loading rate of 1.4 gpd/ft
2
 during the start-up period. As shown in Figure 5−3, 

the effluent COD from the gravel biofilter remained stable at a low level (on average 42 mg/L). 

On the other hand, the effluent COD from peat was still relatively high and dramatically 

increased due primarily to the release of dissolved organic matter from the filter media, which 

were generally considered to be refractory. These compounds may in turn affect COD values in 

the effluent. The color of the effluent also gradually changed from light brown to dark brown 

with time. The relatively higher COD/BOD ratio of 25 in peat biofilter effluent during the start-

up period, suggested that it contained high molecular weight humic and fulvic-like compounds.  

 

The effluent COD concentrations from the RRP biofilter were maintained at similar 

levels of influent COD. Suspended and colloidal particles in the influent are usually transported 

to the filter media and removed by several mechanisms including interception, sedimentation, 

and diffusion. On day 47, each biofilter was seeded with 5 L of activated sludge from the water 

pollution control plant to promote biofilm formation and to improve organic removal 

efficiencies. The hydraulic loading rate was maintained at 1.4 gpd/ft
2
 during the start-up periods, 

which allowed the biomass to become acclimated to the wastewater and reactor configuration. 
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Figure 5−3. Variations in influent and effluent COD during the start-up period 

 

Organic removal  

Table 5−2. Summary of the influent and effluent parameters  

 

The applied hydraulic loading rate was increased stepwise from 1.4 to 5.0 gpd/ft
2
. The 

experiment was divided into five consecutive phases with different hydraulic loading rates. 

Average influent and effluent concentrations are summarized in Table 5−2.  

 

 

Parameter 
Average concentration (mg/L) 

STE RRP Peat moss Gravel 

TSS 401 ±456 19 ±15 15 ±6 94 ±97 

VSS 341 ±379 10 ±7 11 ±5 48 ±37 

COD 468 ±348 107 ±19 240 ±150 50 ±31 

BOD5 204 ±81 16.1 ±22.1 19.9 ±7.5 5.1 ±2.4 

NH3-N 58.2 ±18.8 9.2 ±12.1 15.4 ±13.2 2.1 ±5.5 
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Figure 5−4. Variations of COD, BOD, TSS, and VSS in septic tank effluents 
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Figure 5−5. Variations of COD, BOD, and TSS in effluents with hydraulic loading rate  

 

The gravel biofilter provided effective organic removal regardless of the hydraulic or 

organic loading rate applied. The overall average removal efficiencies of COD and BOD were 

86% and 97 %, respectively. Due to the high hydraulic conductivities of the gravel, seed 
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activated sludge was evenly distributed over the entire height of the gravel biofilter and thus 

biofilm development was noticed at the end of the start-up period. Solids gradually accumulated 

on the gravel surface during low hydraulic loading condition. Additionally, the low water 

holding capacity of gravel could not provide mechanical filtration. The gravel biofilter effluent 

had relatively high TSS concentrations throughout the study. Figure 5−6 shows a rapid increase 

to a peak value, followed by a decrease in TSS concentrations and average TSS concentrations 

increased from 10.1 to 170.3 mg/L during phase 1. As the hydraulic loading rate increased from 

1.4 to 2.0 gpd/ft
2
, sloughing of biomass loosely attached on the surface of filter media or held in 

the void of gravel media occurred by increased hydraulic shear forces, and then sloughed 

biomass passed through the high void space of gravel media. As shown in Figure 5−6, low 

values of the VSS to TSS ratio in effluent were observed in this phase since suspended inorganic 

solids accumulated on the gravel surface also were carried away in the effluent. The growth and 

endogenous decay of biomass would also contribute to effluent VSS concentration. Therefore, 

the average VSS to TSS ratio in phase 1 gradually increased from 0.38 to 0.64 at the end of 

phase 4.  
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Figure 5−6. Variations of ratio of VSS to TSS in effluent from gravel filter  

 

 

 

 

Figure 5−7. COD/BOD ratio in the effluent of the peat and RRP filter 
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The effluent concentrations of the peat biofilter remained relatively constant at an 

average BOD of 21 mg/L and TSS of 15 mg/L, which corresponds to overall removal rates of 88 

and 93%, respectively (Figure 5−5). However, effluent COD levels were showing increasing 

trends and often exceeded those of influent until phase 1, while BOD and TSS concentrations 

were found to be relatively stable. Figure 5−7 shows the average COD/BOD ratios in effluent 

from the peat filter, which was 22 and 18 during the start-up period and phase 1, respectively. 

These indicated that non-biodegradable organic matters contributing soluble COD to the effluent 

were still leaching from the peat. In addition, these compounds have not been found to be 

detrimental to the treatment capabilities in terms of BOD and suspended solids. During phase 2 

and 3, COD and TSS concentrations in the septic tank effluent were significantly increased. 

However, effluent COD decreased with time during these two phases, resulting in a COD/BOD 

ratio of below 10 and COD reduction of 68%. On the other hand, ponding of influent on the peat 

surface occurred frequently due to clogged peat media during this period. On these occasions, the 

peat biofilter operation was temporarily stopped. It could be that as COD and TSS concentrations 

in the influent and also hydraulic loading rates were increased, the pore size of peat could be 

reduced by several factors such as accumulation of excessive biological slime or suspended 

solids and decomposed or compacted peat media. Consequently, the peat biofilter may have 

hydraulic conductivity and poor drainage, causing accelerated clogging of the biofilter as well as 

limited oxygen diffusion. The operation was eventually discontinued at the end of phase 3 with a 

hydraulic loading rate of 4.0 gpd/ft
2 

due to the persistent ponding.  

 

In Figure 5−5, it can be seen that COD, BOD, and solids concentrations in the RRP 

biofilter dropped significantly as the biofilm began to develop and the leaching rate of organic 
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compounds decreased during start-up period. Despite the increase in hydraulic loading, effluent 

COD concentrations continued to decrease, and thus 61, 80, 89, and 83% of removal efficiencies 

were achieved during phase 1, 2, 3, and 4, respectively. It should be noted that effluent TSS 

concentration also decreased with the increasing COD removal rate. These results confirmed that 

leaching of dissolved organic compounds from the RRP was negligible or these compounds 

could be degraded by the biomass after about 30 days of acclimation period during start-up. 

Previous studies have shown the biodegradation of benzothiazole derivatives (De Wever and 

Verachtert., 1997; Gaja and Knapp.,1997; Haroune et al., 2002; Nawrocki et al., 2002). Contrary 

to high COD/BOD ratios found in the peat biofilter due to residual non-biodegradable organics, 

those of the RRP biofilter during phase 1 and 2 were most likely a result of fairly low 

concentrations of effluent BOD, since most of the biodegradable organic matter had been 

degraded and suspended solids were also removed by physical straining (Figure 5−7).  

 

 

Figure 5−8. Ammonia nitrogen concentration in the influent and effluent 
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Ammonia removal 

Organic nitrogen was converted into ammonia through the process of anaerobic 

decomposition in the septic tanks. Hence, effluent typically contains inorganic nitrogen primarily 

in the form of ammonium. Ammonia nitrogen concentrations (NH3-N) in the influent ranged 

from 19 to 99 mg/L with an average value of 58.2 mg/L, and an average nitrate nitrogen 

concentration (NO3-N) was less than 15 mg/L (Fig. 5−8). Ammonia nitrogen would be adsorbed 

and oxidized to nitrate by autotrophic bacteria under aerobic conditions, which is referred to as 

nitrification. The RRP and gravel biofilter achieved excellent performance with respect to 

ammonia removal. The average ammonia nitrogen concentrations and removal efficiency from 

the RRP biofilter were 9 mg/L and 84%, respectively. Considering the nitrate nitrogen 

concentrations similar to those of influent, ammonia could be removed by the adsorption of 

ammonia on RRP or simultaneous nitrification and denitrification in the RRP biofilter. The 

nearly complete ammonia nitrogen removal was accomplished by nitrification in the gravel 

biofilter throughout the operation. This was reflected in the low ammonia nitrogen and 

increasing nitrate nitrogen concentrations (35 mg/L) of the gravel biofilter effluent. The 

nitrification process was probably enhanced by the sufficient void space of gravel media 

allowing for efficient diffusion of oxygen into biofilms. Ammonia nitrogen concentrations of the 

peat biofilter effluent increased and often exceeded those of the septic tank effluent during phase 

2 and 3. The mean ammonia nitrogen removal efficiency dropped below 43% as nitrification was 

limited by oxygen availability due to the clogged filter during phase 3.  
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Fecal coliform removal  

The fecal coliform concentrations of the influent and effluent were determined by EC 

medium test kit from HACH. The levels of fecal coliform bacteria in the septic tank effluent 

ranged from 110 MPN/100 ml to 350/100 ml. These levels were much lower levels than those of 

typical septic tank effluent in the range of 10
6
 to 10

8
 MPN/100mL (EPA, 2002). The results 

showed that all three biofilters reduced the fecal coliform to less than 2 MPN/100mL. Therefore, 

RRP biofilter can be expected to perform similarly to other systems, such as peat filter or 

conventional gravel drainfield with respect to pathogen removal. 

 

 

Conclusion 

Compared to a conventional gravel system and a peat biofilter system for treatment of 

septic tank effluent, the lab-scale RRP biofilter showed similar or better treatment performance 

in terms of organic removal and stable operation. After the start-up period, RRP biofilter 

achieved removal efficiencies for BOD5, TSS, ammonia nitrogen of 96%, 93%, and 90%, 

respectively, over the range of hydraulic loading rates of 1.4 to 5.0 gpd/ft
2
. On the other hand, 

ponded conditions often occurred in the peat biofilter which promoted anaerobic conditions and 

lower organic and ammonia removal. The operation was eventually discontinued at the end of 

phase 3 with a hydraulic loading rate of 4.0 gpd/ft
2 

due to the persistent ponding problems. 

Suspended solids removal rates of the gravel filter did not depend on solids concentration in the 

influent, but hydraulic loading rates. High TSS concentrations in the effluent were assumed to be 

mostly biomass sloughed by hydraulic shear forces.  
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RRP provided high surface area and sufficient time for biological treatment. In addition, 

RRP provided a non-toxic media for biofilm attachment in biofilter. RRP was observed to 

provide ammonia adsorption capacity. Therefore, RRP biofilter is an acceptable leach filed 

media for treatment of septic tank effluent. Application of RRP as packing media of biofilter and 

also substitutes for natural aggregate in septic system drainfields would provide economic 

benefits. 
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CHAPTER 6. CONCLUSIONS 

 

 
The performance and operational stability of the three pilot-scale SGBR for the treatment 

of industrial wastewater were investigated in this study. The two pilot-scale SGBR (R1 and R2) 

demonstrated excellent process performance for the treatment of slaughterhouse wastewater. R1 

and R2 achieved the average COD removal rates of 94 and 95% at OLR ranging from 1.01 to 

3.56 and 0.94 to 12.76 kg COD/m
3
/d, respectively. During the operation of reactors, the solid 

retention times over 240 and 150 days for the R1 and R2, respectively were obtained. Long SRT 

enabled slow growing methanogens to get sufficient time to grow and stabilize, and promoted the 

proliferation of methanogenic bacteria in the granular sludge bed. The pilot-scale SGBR was also 

successfully employed for treating dairy processing wastewater under psychrophilic conditions. 

At low temperatures of 11°C, COD, BOD, and TSS removal rates obtained were 93, 96, and 

90%, respectively. The SGBR achieved average COD, BOD, and TSS removal efficiencies 

higher than 91% even at high loading rates up to 7.31 kg COD/m
3
/d with an HRT of 9 h. The of 

three pilot-scale SGBR were operating in a stable condition since pH values were in the optimal 

range and VFA/alkalinity ratios were fairly low throughout the experimental period. The average 

methane yield (0.26 L CH4/g CODremoved) was possibly due to a high fraction of particulate COD 

(32 to 52%) and operation at low temperatures. Soluble COD seemed to be responsible for most 

of the methane production and particulate organic matter was physically retained by adsorption 

of the colloidal fraction of wastewater to granular sludge and the entrapment of coarse suspended 

solids in the sludge bed. Increased headloss through the granular bed due to the accumulated 

excess biomass and the retained solids were controlled by periodic backwashing.  

 

A proper backwash rate is necessary to ensure effective removal of dispersed fine sludge 
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and excessive suspended solids. Assuming that the average granule size and density in this study 

are in the range of 0.8-1.6 mm and 1000-1060 kg/m
3
, respectively, the minimum backwash rates 

varied from 0.02 to 4.34 m/h depending on the size and density of the granules. The proper 

backwash velocity ranged from 0.11 to 11.33 m/h based on the assumption that the bed porosity 

increased up to 0.4 and 50% expansion was selected as the optimum value. Therefore, backwash 

at a flow rate of 10-15 gpm (3.91-5.87 m/h) was applied to the pilot-scale SGBR (cross-sectional 

area: 6.25 ft
2
) treating dairy wastewater in Tulare, CA. 

 

Compared to a conventional gravel system and a peat biofilter system for treatment of 

septic tank effluent, the lab-scale RRP biofilter provided similar or better performance in terms 

of organic removal and hydraulic capacity. After the start-up period, RRP biofilter achieved 

removal efficiencies for BOD5, TSS, ammonia nitrogen of 96, 93, and 90%, respectively, over 

the range of hydraulic loading rates of 1.4 to 5.0 gpd/ft
2
. On the other hand, the peat biofilter 

failed hydraulically and the gravel system showed high TSS concentrations in the effluent. RRP 

provided high surface area and sufficient time for biological treatment. In addition, RRP 

provided a non-toxic media for biofilm attachment in biofilter. RRP was observed to provide 

ammonia adsorption capacity. The results showed that RRP has the potential to be used as 

substitutes for natural aggregate such as gravel in septic system drainfields. The RRP biofilter 

can be used as alternative septic systems for the sites where an existing septic system has failed 

or site conditions, such as high groundwater table or small lot size, are not suitable for the 

installation of conventional septic systems.  
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Engineering Significance 

The pilot scale SGBR was successfully employed for treating industrial wastewater under 

different operational conditions. The main advantages for the SGBR are high organic removal 

efficiency and operational simplicity. A high degree of organic removal was obtained in the 

SGBR even at short HRT and high OLR due to its long SRT. Consequently, capital costs are 

saved because of relatively small reactor volume sizes than other high rate anaerobic systems. 

The SGBR can also reduce relatively high costs associated with the packing materials, mixing 

equipment, or recirculation systems required. The SGBR generates methane which can be used 

in boilers or engine generators to produce electricity. Anaerobic treatment produces 11,000 BTU 

of methane per kg of chemical oxygen demand (COD) removed while aerobic treatment requires 

energy for aeration of 0.7 kilowatt-hour (kWh) per kg COD.  Additionally, anaerobic processes 

generate only 20% of sludge compared with aerobic processes, resulting in significant cost 

saving for sludge handling, treatment, and disposal.  

 

An aggregate such as gravel used in drainfield is not cost-effective due to the shipping 

cost for hauling gravel over long distances. According to industry averages, overall costs for 52 

tons of gravel for one residential drainfield will be $865 if it is assumed that the gravel is around 

$10 per ton and the building site is 50-miles from the supplier. Peat filter media needs to be 

replaced since the peat decomposes and degrades over time. On the other hand, effective organic 

removal and stable operation of the RRP biofilter confirmed the feasibility of the septic tank 

effluent treatment. Application of RRP as substitutes for natural aggregate in septic system 

drainfields would provide substantial advantages in terms of cost saving due to their light weight. 

RRP is easy to handle without the use of heavy equipment, which reduces labor costs, limits 
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damage to the property by machinery, and allows the systems to be constructed in locations 

inaccessible to heavy equipment.  
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APPENDIX A 

 
Ammonia adsorption ability  

Previous studies have shown that ground tire rubber was usually applicable to the 

removal of metals such as mercury and cadmium (Entezari et al., 2006; Manchón-Vizuete et al., 

2005). Organic compounds sorption onto ground tires was also reported (Kim et al., 1997). 

Adsorption capacity of RRP for ammonia was investigated using batch adsorption tests. Various 

RRP dosages ranging from 0.2 to 5g were added into the Erlenmeyer flasks filled with 150mL of 

ammonium chloride solution with fixed concentration of 10mg/L NH4
+
. Amounts of ammonia 

adsorbed by RRP were calculated as the difference between amounts of ammonia initially added 

and those remaining in the supernatant solutions. The ability of RRP to adsorb ammonia was 

assessed using Langmuir and Freundlich isotherms.  

 

Table A−1. Ammonia nitrogen removal in batch tests at different RRP dosage 

RRP dosage (g) 
Ammonia concentration 

(mg/L as NH3-N) 

Removed Ammonia 

(mg/L as NH3-N) 

5 3.7 6.1 

3 4.7 5.1 

2 5.2 4.6 

1 5.9 3.8 

0.5 7 2.8 

0.2 8.1 1.7 

0 9.8 0 

 

The most common adsorption isotherms are the Langmuir isotherm and the Freundlich 

isotherm. The linear form of the Langmuir isotherm is shown below:  

 

 

1e e

e

C C

Q b Kb
                                                                                                                          (A.1) 
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where  Qe = the amount of adsorbate adsorbed per unit mass of adsorbent (mg/g) 

Ce = the concentration of adsorbate left in solution at equilibrium (mg/L)  

K = the adsorption energy coefficient (L/mg)  

b = the maximum adsorption capacity of adsorbent (mg/g)  

 

 

Figure A−1. Linear plot of Langmuir isotherm of ammonia adsorption on RRP 

 

The maximum adsorption capacity b and the adsorption energy coefficient K were 

determined by plotting Ce/Qe against Ce as shown in Figure 5−9. However, a negative slope was 

obtained, which indicated that the adsorption behavior of RRP ammonia did not follow the 

assumption of the Langmuir isotherm possibly due to the heterogeneous surface of RRP. 

Therefore, the Freundlich isotherm was used since it was considered to be suitable for 

heterogeneous adsorption systems. The Freundlich adsorption isotherm can be expressed by 

following equation. 

 

y = -0.5133x + 4.929 

R² = 0.9376 
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1

e= ×C n
e fQ K                                                                                                           (A.2) 

 

 

where Qe is the amount of ammonia adsorbed per unit mass of RRP (mg/g) and Ce is the solution 

concentration at equilibrium, and Kf and n are the Freundlich constants relating to adsorption 

capacity and intensity respectively. A linear plot of log Qe against log Ce is shown in Figure 5−9.  

 

Table A−2. Freundlich adsorption isotherm values 

Qe (mg/g) Ce (mg/L) Log Qe Log Ce 

1.22 3.7 0.09 0.57 

1.7 4.7 0.23 0.67 

2.3 5.2 0.36 0.72 

3.8 5.9 0.58 0.77 

5.6 7.0 0.75 0.85 

8.5 8.1 0.93 0.91 

 

 

 

Figure A−2. Linear plot of Freundlich isotherm of ammonia adsorption on RRP 

 

The Freundlich constants (Kf and n) were calculated using a linear regression method 

with correlation coefficients greater than 0.97 as shown in Figure 5−10. Constant Kf was 3.65 

y = 0.3771x + 0.5623 

R² = 0.9779 
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mg/g and constant 1/n was 0.377.  Therefore, the Freundlich isotherm was found to be suitable 

for describing adsorption behavior of RRP for ammonia nitrogen, and it could be expressed as 

the following:  

 

0.3773.65e eQ C                                                    (A.3) 
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